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MULTIPLICITY RESULTS FOR THE WAVE SYSTEM

USING THE LINKING THEOREM

Hyewon Nam

Abstract. We investigate the existence of solutions of the one-
dimensional wave system

utt − uxx + µg(u+ v) = f(u+ v) in (−π
2 ,

π
2 )×R,

vtt − vxx + νg(u+ v) = f(u+ v) in (−π
2 ,

π
2 )×R,

with Dirichlet boundary condition. We find them by applying linking
inequlaities.

1. Introduction

In [1] and [2], the authors investigate multiplicity of solutions for
a piecewise linear perturbation of the one-dimensional wave operator
under Dirichlet boundary condition on the interval (−π

2
, π
2
) and periodic

condition on the variable t. The wave system with Dirichlet boundary
condition,

utt − uxx + µg(u+ v) = f(u+ v) in (−π
2
, π
2
)×R,

vtt − vxx + νg(u+ v) = f(u+ v) in (−π
2
, π
2
)×R.

we have extended. We applied the linking inequalities to studying mul-
tiple nontrivial solutions for the system.

In section 2, we have a concern with the wave equation

utt − uxx + bu+ − au− = f(u) in (−π
2
, π
2
)×R,

Received April 30, 2013. Revised June 11, 2013. Accepted June 15, 2013.
2010 Mathematics Subject Classification: 35J55, 49J35.
Key words and phrases: Wave systems, Linking theorem.
c⃝ The Kangwon-Kyungki Mathematical Society, 2013.
This is an Open Access article distributed under the terms of the Creative com-

mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by
-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduc-
tion in any medium, provided the original work is properly cited.



204 Hyewon Nam

with Dirichlet boundary condition. We find a suitable functional I on
a Hilbert space H and prove the suitable version of the Palais-Smale
condition for the topological method. And we find the two linking type
inequalities, relative to two diferent decompositions of the space H. In
section 3, we applied the results in order to study the wave system.

2. The single wave equation

We consider the following one-dimensional nonlinear wave equation

utt − uxx + bu+ − au− = f(u) in (−π
2
, π
2
)×R,

u(±π
2
, x) = 0,(1)

u is π-periodic in t and even in x and t,

where f is defined by

f(s) =

{
|s|p−2s, s ≥ 0
|s|q−2s, s < 0

(2)

where p, q > 2 and p ̸= q.

2.1. The Palais Smale condition. To begin with, we consider the
associated eigenvalue problem

utt − uxx = λu in (−π
2
, π
2
)×R

u(±π
2
, x) = 0(3)

u(t, x) = u(−t, x) = u(t,−x) = u(t+ π, x).

A simple computation shows that equation (3) has infinitely many eigen-
values λmn and the corresponding eigenfunctions ϕmn given by

λmn = (2n+ 1)2 − 4m2,

ϕmn(t, x) = cos 2mt cos(2n+ 1)x (m,n = 0, 1, 2, · · · ).
Let Q be the square [−π

2
, π
2
]× [−π

2
, π
2
] and H the Hilbert space defined

by
H = {u ∈ L2(Q)|u is even in x and t}.

Then the set {ϕmn|m,n = 0, 1, 2, · · · } is an orthogonal base of H and H
consists of the functions

u(x, t) =
∞∑

m,n=0

amnϕmn(t, x)
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with the norm given by

∥u∥2 =
∞∑

m,n=0

a2mn.

We denote by (Λ−
i )i≥1 the sequence of the negative eigenvalues of

equation (3), by (Λ+
i )i≥1 the sequence of the positive ones, so that

· · · < Λ−
1 = −3 < Λ+

1 = 1 < Λ+
2 = 5 < · · · .

We consider an orthonormal system of eigenfunctions {e−i , e+i , i ≥ 1}
associated with the eigenvalues {Λ−

i ,Λ
+
i , i ≥ 1}. We set

H+ = closure of span{eigenfunctions with eigenvalue ≥ 0},
H− = closure of span{eigenfunctions with eigenvalue ≤ 0}.

We define the linear projections P− : H → H−, P+ : H → H+.
We also introduce two linear operators R : H → H+, S : H → H− by

S(u) =
∞∑
i=1

a−i e
−
i√

−Λ−
i

, R(u) =
∞∑
i=1

a+i e
+
i√

Λ+
i

if

u =
∞∑
i=1

a−i e
−
i +

∞∑
i=1

a+i e
+
i .

It is clear that S and R are compact and self adjoint on H.

Definition 2.1. Let Ib : H → R be defined by

Ib(u) =
1

2
∥P+u∥2 − 1

2
∥P−u∥2

+
b

2
∥[Au]+∥2 − a

2
∥[Au]−∥2 −

∫
Ω

F (Au)dtdx

where A = R + S and F (s) =
∫ s

0
f(τ)dτ .

It is straightforward that

∇Ib(u) = P+u− P−u+ bA(Au)+ − aA(Au)− − Af(Au).

Following the idea of Hofer (see [3]) one can show that

Proposition 2.1. Ib ∈ C1,1(H,R). Moreover ∇Ib(u) = 0 if and only
if w = (R + S)(u) is a weak solution of (P), that is,∫

Ω

((wtt − wxx)v + b[w]+v − a[w]−v)dtdx =

∫
Ω

f(w)vdtdx
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for all smooth v ∈ H.

In this section, we suppose b > 0. Under this assumption, we have a
concern with multiplicity of solutions of equation (1). Here we suppose
that f is defined by equation (2).

In the following, we consider the following sequence of subspaces of
L2(Q) :

Hn = (⊕n
i=1HΛ−

i
)⊕ (⊕n

i=1HΛ+
i
)

where HΛ is the eigenspace associated to Λ.

Lemma 2.1. The functional Ib satisfies (P.S.)
∗
γ condition, with respect

to (Hn), for all γ.

Proof. Let (kn) be any sequence in N with kn → ∞. And let (un)
be any sequence in H such that un ∈ Hn for all n, Ib(un) → γ and
∇(Ib) |Hkn

(un)→ 0.
First, we prove that (un) is bounded. By contradiction let tn =

∥un∥ → ∞ and set ûn = un/tn. Up to a subsequence ûn ⇀ û in H
for some û in H. Moreover

0 ← < ∇(Ib)Hkn
(un), ûn > − 2

tn
Ib(un)

=
2

tn

∫
Ω

F (Aun)dtdx−
1

tn

∫
Ω

f(Aun)Aundtdx

=

∫
Ω

−p− 2

p
(tn)

p−1[(Aûn)
+]p +

q + 2

q
(tn)

q−1[(Aûn)
−]qdtdx.

Since tn →∞, (Aûn)
+ → 0 and (Aûn)

− → 0. This implies Aû = 0 and
û = 0, a contradiction.

So (un) is bounded and we can suppose un ⇀ u for some u ∈ H. We
know that

∇(Ib)Hkn
(un) = P+un − P−un + bA(Aun)

+ − aA(Aun)
− − Af(Aun).

Since A is the compact operator, P+un−P−un converges strongly, hence
un → u strongly and ∇Ib(u) = 0.

2.2. The first result applying the linking theorem. Fixed Λ−
i . We

prove the Theorem via a linking argument.
First of all, we introduce a suitable splitting of the space H. Let

Z1 = ⊕∞
j=i+1HΛ−

j
, Z2 = HΛ−

i
, Z3 = ⊕i−1

j=1HΛ−
j
⊕H+

Lemma 2.2. There exists R such that supv∈Z1⊕Z2,∥v∥=R Ib(v) ≤ 0.
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Proof. If v ∈ Z1 ⊕ Z2 then

Ib(v) = −
1

2
∥v∥2 + b

2
∥[Sv]+∥2 − a

2
∥[Sv]−∥2 −

∫
Ω

F (Sv)dtdx.

Since
b

2
∥[Sv]+∥2 − a

2
∥[Sv]−∥2 −

∫
Ω

F (Sv)dtdx

=

∫
Ω

b

2
([Sv]+)2 − 1

p
([Sv]+)p − a

2
([Sv]−)2 − 1

q
([Sv]−)qdtdx,

there exists R such that b
2
∥[Sv]+∥2 − a

2
∥[Sv]−∥2 −

∫
Ω
F (Sv)dtdx ≤ 0 for

all ∥v∥ = R. Hence

Ib(v) ≤ −
1

2
∥v∥2 ≤ 0.

Lemma 2.3. There exists ρ such that infu∈Z2⊕Z3,∥u∥=ρ Ib(u) > 0.

Proof. Let σ ∈ [0, 1]. We consider the functional Ib,σ : Z2 ⊕ Z3 → R
defined by

Ib,σ(u) =
1

2
∥P+u∥2 − 1

2
∥P−u∥2

+
b

2
∥[Au]+∥2 − a

2
∥[Au]−∥2 − σ

∫
Ω

F (Au)dtdx.

We claim that there exists a ball Bρ = {u ∈ Z2⊕Z3|∥u∥ < ρ} such that

1. Ib,σ are continuous with respect to σ,
2. Ib,σ satisfies (P.S) condition,
3. 0 is a minimum for Ib,0 in Bρ,
4. 0 is the unique critical point of Ib,σ in Bρ.

Then by a continuation argument of Li-Szulkin’s (see[4]), it can be
shown that 0 is a local minimum for Ib|Z2⊕Z3

= Ib,1 and Lemma is proved.
The continuity in σ and the fact that 0 is a local minimum for Ib,0

are straightforward. To prove (P.S.) condition one can argue as in the
previous Lemma, when dealing with Ib.

To prove that 0 is isolated we argue by contradiction and suppose
that there exists a sequence (σn) in [0, 1] and sequence (un) in Z2 ⊕ Z3

such that ∇Ib,σn(un) = 0 for all n, un ̸= 0, andun → 0. Set tn = ∥un∥
and ûn = un/tn then tn → 0. Let v̂n = P−ûn and ŵn = P+ûn. Since
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v̂n varies in a finite dimensional space, we can suppose that v̂n → v̂ for
some v̂. We get

1

tn
∇Ib,σ(un) = ŵn − v̂n(4)

+
b

tn
A(Aun)

+ − a

tn
A(Aun)

− − σn

tn
Af(Aun) = 0.

Multiplying by ŵn yields

∥ŵn∥2 =
σn

tn

∫
Ω

f(Aun)Aŵndtdx−
b

tn

∫
Ω

(Aun)
+Aŵndtdx.

We know that∫
Ω

(Aun)
+Aŵndtdx =

∫
Ω

P+(Aun)
+Aûndtdx

=

∫
Ω

P+(Aun)
+(Aûn)

+dtdx.

Since b > 0, there exists a sequence (ϵn) such that ϵn → 0 and 0 < ϵn < b
for all n. That is

b

tn

∫
Ω

(Aun)
+Aŵndtdx ≥

ϵn
tn

∫
Ω

P+(Aun)
+(Aûn)

+dtdx.

Then

∥ŵn∥2 ≤
1

tn

∫
Ω

f(Aun)Aŵndtdx−
ϵn
tn

∫
Ω

P+(Aun)
+(Aûn)

+dtdx

≤
∫
Ω

|f(Aun)|
tn

|Aŵn|dtdx+ ϵn

∫
Ω

|P+(Aûn)
+||(Aûn)

+|dtdx.

Since A is a compact operator

|f(Aun)| = |{([tnAûn]
+)p−1 − ([tnAûn]

−)q−1}|
≤ tn

p−1|[Aûn]
+|p−1 + tn

q−1|[Aûn]
−|q−1

≤ tn
m(M1 + tn

M−mM2)

for some M1 and M2 where m = min{p − 1, q − 1} and M = max{p −
1, q − 1}. We get that∫
Ω

|f(Aun)|
tn

|Aŵn|dxdt ≤ tn
m(M1 + tn

M−mM2)

∫
Ω

|Aŵn|dtdx ≤ o(1).
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Hence

∥ŵn∥2 ≤ o(1) + ϵn

∫
Ω

|P+(Aûn)
+||(Aûn)

+|dtdx.(5)

Since
∫
Ω
|P+(Aûn)

+||(Aûn)
+|dxdt is bounded and equation (5) holds

for every ϵn, ŵn → 0 and so (ûn) converges. Since |f(Aun)| ≤ tn
m(M1 +

tn
M−mM2), we get

σn

tn
|f(Aun)| ≤

1

tn
|f(Aun)| ≤ tn

m−1(|M1 + tn
M−mM2) ≤ o(1).

Then σn

tn
Af(Aun) → 0. From equation (4), (v̂n) converges to zero, but

this is impossible if ∥ûn∥ = 1.

Definition 2.2. Let H be an Hilbert space, Y ⊂ H, ρ > 0 and
e ∈ H \ Y , e ̸= 0. Set:

Bρ(Y ) = {x ∈ Y | ∥x∥ ≤ ρ},
Sρ(Y ) = {x ∈ Y | ∥x∥ = ρ},

△ρ(e, Y ) = {σe+ v | σ ≥ 0, v ∈ Y, ∥σe+ v∥ ≤ ρ},
Σρ(e, Y ) = {σe+ v | σ ≥ 0, v ∈ Y, ∥σe+ v∥ = ρ} ∪ {v | v ∈ Y, ∥v∥ ≤ ρ}.

Theorem 2.1. If b > 0, then the problem (1) has at least one non-
trivial solution.

Proof. Let e ∈ Z2. By Lemma 3.1 and Lemma 3.2, for a suitable large
R and a suitable small ρ, we have the linking inequality

sup Ib(ΣR(e, Z1)) < inf Ib(Sρ(Z2 ⊕ Z3)).

Moreover (P.S.)∗γ holds. By standard linking arguments, it follows that
there exists a critical point u for Ib with α ≤ Ib(u) ≤ β, where α =
inf Ib(Sρ(Z2 ⊕ Z3)) and β = sup Ib(∆R(e, Z1)). Since α > 0, then u ̸=
0.

2.3. The second result applying the linking theorem. We assume
in this section that i ≥ 2 and we set

W1 = ⊕∞
j=iHΛ−

j
,W2 = ⊕i−1

j=1HΛ−
j
,W3 = H+.

Notice that W1 = Z1 ⊕ Z2 and W2 ⊕W3 = Z3.

Lemma 2.4. lim inf∥u∥→+∞,u∈W1⊕W2 Ib(u) ≤ 0.
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Proof. Let (un)n be a sequence in W1⊕W2 such that ∥un∥ → ∞. We
set tn = ∥un∥ and ûn = un/tn. Since S is a compact operator,

b

2

∥[Sun]
+∥2

t2n
− a

2

∥[Sun]
−∥2

t2n
−

∫
Ω

F (Sun)

t2n
dtdx

=

∫
Ω

b

2
([Sûn]

+)2 − tn
p−2

p
([Sûn]

+)p − a

2
([Sûn]

−)2 − tn
q−2

q
([Sûn]

−)qdtdx

→ −∞.

Then

Ib(un)

∥un∥2
= −1

2
+

b

2

∥[Sun]
+∥2

t2n
− a

2

∥[Sun]
−∥2

t2n
−

∫
Ω

F (Sun)

t2n
dtdx→ −∞.

Hence

lim inf
∥u∥→+∞,u∈W1⊕W2

Ib(u) ≤ 0.

Lemma 2.5. There exists ρ̂ such that inf Ib(Sρ̂(W2 ⊕W3)) > 0.

Proof. Repeating the same arguments used in 2.3, we get the conclu-
sion.

Theorem 2.2. Let i ≥ 2. If b > 0, then the problem (1) has at least
two nontrivial solution.

Proof. Using the conclusion of 2.1, we have that there exist a nontriv-
ial critical point u with

Ib(u) ≤ sup Ib(∆R(e, Z1))

where e,R were given in Lemma 3.1 and 3.2. We can choose that R̂ ≥ R.
Take any ê in W2, then we have a second linking inequality,

sup Ib(ΣR̂(ê,W1)) ≤ inf Ib(Sρ̂(W2 ⊕W3)).

Since (P.S.)∗γ holds, there exists a critical point û such that

inf Ib(Sρ̂(W2 ⊕W3)) ≤ Ib(û) ≤ sup Ib(∆R̂(ê,W1)).

Since R̂ ≥ R and Z1 ⊕ Z2 = W1,

∆R(e, Z1) ⊂ BR̂(W1) ⊂ ΣR̂(ê,W1).
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Then

Ib(u) ≤ sup Ib(∆R(e, Z1))

≤ sup Ib(ΣR̂(ê,W1)) < inf Ib(Sρ̂(W2 ⊕W3)) ≤ Ib(û).

Hence u ̸= û.

3. Solutons of the wave system

In this section we investigate the existence of solutions (u(t, x), v(t, x))
of wave system with Dirichlet boundary condition

utt − uxx + µg(u+ v) = f(u+ v) in (−π
2
, π
2
)×R,

vtt − vxx + νg(u+ v) = f(u+ v) in (−π
2
, π
2
)×R,

u(±π
2
, x) = 0, v(±π

2
, x) = 0,(6)

u and v is π-periodic in t and even in x and t,

where g(u) = bu+ − au− and f is defined by (2).

Theorem 3.1. Let µ, ν be positive constants and let i ≥ 2. If b > 0,
then the problem (6) has at least two nontrivial solutions.

Proof. We get that

(u− µ

ν
v)tt − (u− µ

ν
v)xx = (1− µ

ν
)f(u+ v)

By contraction mapping principle, the problem

utt − uxx = F in (−π
2
, π
2
)×R,

u(±π
2
, x) = 0

has a unique solution. If u1 is a solution of utt − uxx = (1 − µ
ν
)f , then

the solution (u, v) of problem (6) satisfies

u− µ

ν
v = u1.

On the other hand, from problem (6) we get the equation

(u+ v)tt − (u+ v)xx + (µ+ ν)g(u+ v) = 2f(u+ v) in (−π
2
, π
2
)×R,

u(±π
2
, x) = 0, v(±π

2
, x) = 0,

u and v is π-periodic in t and even in x and t.
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Put w = u+ v. Then the above equation is equivalent to

wtt − wxx + (µ+ ν)g(w) = 2f(w) in (−π
2
, π
2
)×R,

w(±π
2
, x) = 0,(7)

w is π-periodic in t and even in x and t.

By Theorem 2.2, equation (7) has at least two nontrivial solution. If
w1 is a solution of problem (7), then the solution (u, v) of problem (6)
satisfies

u+ v = w1.

Hence we get the solution (u, v) of problem (6) from the following
systems:

u− µ

ν
v = u1,(8)

u+ v = w1.

Since 1 + µ
ν
> 0, system (8) has a unique solution (u, v). Therefore

system (6) has at least two nontrivial solutions.
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