MULTIPLICITY RESULTS FOR THE WAVE SYSTEM USING THE LINKING THEOREM

Hyewon Nam

Abstract. We investigate the existence of solutions of the onedimensional wave system

$$
\begin{aligned}
& u_{t t}-u_{x x}+\mu g(u+v)=f(u+v) \\
& v_{t t}-v_{x x}+\nu g\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times R, \\
&\left.v_{t}\right)=f(u+v) \\
& \text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times R,
\end{aligned}
$$

with Dirichlet boundary condition. We find them by applying linking inequlaities.

1. Introduction

In [1] and [2], the authors investigate multiplicity of solutions for a piecewise linear perturbation of the one-dimensional wave operator under Dirichlet boundary condition on the interval ($-\frac{\pi}{2}, \frac{\pi}{2}$) and periodic condition on the variable t. The wave system with Dirichlet boundary condition,

$$
\begin{aligned}
u_{t t}-u_{x x}+\mu g(u+v)=f(u+v) & \text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times R, \\
v_{t t}-v_{x x}+\nu g(u+v)=f(u+v) & \text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times R .
\end{aligned}
$$

we have extended. We applied the linking inequalities to studying multiple nontrivial solutions for the system.

In section 2, we have a concern with the wave equation

$$
u_{t t}-u_{x x}+b u^{+}-a u^{-}=f(u) \quad \text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times R,
$$

Received April 30, 2013. Revised June 11, 2013. Accepted June 15, 2013.
2010 Mathematics Subject Classification: 35J55, 49J35.
Key words and phrases: Wave systems, Linking theorem.
(c) The Kangwon-Kyungki Mathematical Society, 2013.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
with Dirichlet boundary condition. We find a suitable functional I on a Hilbert space H and prove the suitable version of the Palais-Smale condition for the topological method. And we find the two linking type inequalities, relative to two diferent decompositions of the space H. In section 3, we applied the results in order to study the wave system.

2. The single wave equation

We consider the following one-dimensional nonlinear wave equation

$$
\begin{gather*}
u_{t t}-u_{x x}+b u^{+}-a u^{-}=f(u) \quad \text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times R, \\
u\left(\pm \frac{\pi}{2}, x\right)=0, \tag{1}
\end{gather*}
$$

u is π-periodic in t and even in x and t ,
where f is defined by

$$
f(s)= \begin{cases}|s|^{p-2} s, & s \geq 0 \tag{2}\\ |s|^{q-2} s, & s<0\end{cases}
$$

where $p, q>2$ and $p \neq q$.
2.1. The Palais Smale condition. To begin with, we consider the associated eigenvalue problem

$$
\begin{gather*}
u_{t t}-u_{x x}=\lambda u \quad \text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times R \\
u\left(\pm \frac{\pi}{2}, x\right)=0 \tag{3}\\
u(t, x)=u(-t, x)=u(t,-x)=u(t+\pi, x) .
\end{gather*}
$$

A simple computation shows that equation (3) has infinitely many eigenvalues $\lambda_{m n}$ and the corresponding eigenfunctions $\phi_{m n}$ given by

$$
\begin{gathered}
\lambda_{m n}=(2 n+1)^{2}-4 m^{2} \\
\phi_{m n}(t, x)=\cos 2 m t \cos (2 n+1) x \quad(m, n=0,1,2, \cdots) .
\end{gathered}
$$

Let Q be the square $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and H the Hilbert space defined by

$$
H=\left\{u \in L^{2}(Q) \mid u \text { is even in } x \text { and } t\right\} .
$$

Then the set $\left\{\phi_{m n} \mid m, n=0,1,2, \cdots\right\}$ is an orthogonal base of H and H consists of the functions

$$
u(x, t)=\sum_{m, n=0}^{\infty} a_{m n} \phi_{m n}(t, x)
$$

with the norm given by

$$
\|u\|^{2}=\sum_{m, n=0}^{\infty} a_{m n}^{2} .
$$

We denote by $\left(\Lambda_{i}^{-}\right)_{i \geq 1}$ the sequence of the negative eigenvalues of equation (3), by $\left(\Lambda_{i}^{+}\right)_{i \geq 1}$ the sequence of the positive ones, so that

$$
\cdots<\Lambda_{1}^{-}=-3<\Lambda_{1}^{+}=1<\Lambda_{2}^{+}=5<\cdots .
$$

We consider an orthonormal system of eigenfunctions $\left\{e_{i}^{-}, e_{i}^{+}, i \geq 1\right\}$ associated with the eigenvalues $\left\{\Lambda_{i}^{-}, \Lambda_{i}^{+}, i \geq 1\right\}$. We set

$$
\begin{aligned}
H^{+} & =\text {closure of span }\{\text { eigenfunctions with eigenvalue } \geq 0\} \\
H^{-} & =\text {closure of span }\{\text { eigenfunctions with eigenvalue } \leq 0\} .
\end{aligned}
$$

We define the linear projections $P^{-}: H \rightarrow H^{-}, P^{+}: H \rightarrow H^{+}$.
We also introduce two linear operators $R: H \rightarrow H^{+}, S: H \rightarrow H^{-}$by

$$
S(u)=\sum_{i=1}^{\infty} \frac{a_{i}^{-} e_{i}^{-}}{\sqrt{-\Lambda_{i}^{-}}}, R(u)=\sum_{i=1}^{\infty} \frac{a_{i}^{+} e_{i}^{+}}{\sqrt{\Lambda_{i}^{+}}}
$$

if

$$
u=\sum_{i=1}^{\infty} a_{i}^{-} e_{i}^{-}+\sum_{i=1}^{\infty} a_{i}^{+} e_{i}^{+} .
$$

It is clear that S and R are compact and self adjoint on H.
Definition 2.1. Let $I_{b}: H \rightarrow R$ be defined by

$$
\begin{aligned}
I_{b}(u)=\frac{1}{2}\left\|P^{+} u\right\|^{2} & -\frac{1}{2}\left\|P^{-} u\right\|^{2} \\
& +\frac{b}{2}\left\|[A u]^{+}\right\|^{2}-\frac{a}{2}\left\|[A u]^{-}\right\|^{2}-\int_{\Omega} F(A u) d t d x
\end{aligned}
$$

where $A=R+S$ and $F(s)=\int_{0}^{s} f(\tau) d \tau$.
It is straightforward that

$$
\nabla I_{b}(u)=P^{+} u-P^{-} u+b A(A u)^{+}-a A(A u)^{-}-A f(A u) .
$$

Following the idea of Hofer (see [3]) one can show that
Proposition 2.1. $I_{b} \in C^{1,1}(H, R)$. Moreover $\nabla I_{b}(u)=0$ if and only if $w=(R+S)(u)$ is a weak solution of (P), that is,

$$
\int_{\Omega}\left(\left(w_{t t}-w_{x x}\right) v+b[w]^{+} v-a[w]^{-} v\right) d t d x=\int_{\Omega} f(w) v d t d x
$$

for all smooth $v \in H$.
In this section, we suppose $b>0$. Under this assumption, we have a concern with multiplicity of solutions of equation (1). Here we suppose that f is defined by equation (2).

In the following, we consider the following sequence of subspaces of $L^{2}(Q)$:

$$
H_{n}=\left(\oplus_{i=1}^{n} H_{\Lambda_{i}^{-}}\right) \oplus\left(\oplus_{i=1}^{n} H_{\Lambda_{i}^{+}}\right)
$$

where H_{Λ} is the eigenspace associated to Λ.
Lemma 2.1. The functional I_{b} satisfies (P.S. $)_{\gamma}^{*}$ condition, with respect to $\left(H_{n}\right)$, for all γ.

Proof. Let $\left(k_{n}\right)$ be any sequence in N with $k_{n} \rightarrow \infty$. And let $\left(u_{n}\right)$ be any sequence in H such that $u_{n} \in H_{n}$ for all $n, I_{b}\left(u_{n}\right) \rightarrow \gamma$ and $\left.\nabla\left(I_{b}\right)\right|_{H_{k_{n}}}\left(u_{n}\right) \rightarrow 0$.

First, we prove that $\left(u_{n}\right)$ is bounded. By contradiction let $t_{n}=$ $\left\|u_{n}\right\| \rightarrow \infty$ and set $\hat{u_{n}}=u_{n} / t_{n}$. Up to a subsequence $\hat{u_{n}} \rightharpoonup \hat{u}$ in H for some \hat{u} in H. Moreover

$$
\begin{aligned}
0 & \leftarrow<\nabla\left(I_{b}\right)_{H_{k_{n}}}\left(u_{n}\right), \hat{u_{n}}>-\frac{2}{t_{n}} I_{b}\left(u_{n}\right) \\
& =\frac{2}{t_{n}} \int_{\Omega} F\left(A u_{n}\right) d t d x-\frac{1}{t_{n}} \int_{\Omega} f\left(A u_{n}\right) A u_{n} d t d x \\
& =\int_{\Omega}-\frac{p-2}{p}\left(t_{n}\right)^{p-1}\left[\left(A \hat{u_{n}}\right)^{+}\right]^{p}+\frac{q+2}{q}\left(t_{n}\right)^{q-1}\left[\left(A \hat{u_{n}}\right)^{-}\right]^{q} d t d x .
\end{aligned}
$$

Since $t_{n} \rightarrow \infty,\left(A \hat{u_{n}}\right)^{+} \rightarrow 0$ and $\left(A \hat{u_{n}}\right)^{-} \rightarrow 0$. This implies $A \hat{u}=0$ and $\hat{u}=0$, a contradiction.

So $\left(u_{n}\right)$ is bounded and we can suppose $u_{n} \rightharpoonup u$ for some $u \in H$. We know that

$$
\nabla\left(I_{b}\right)_{H_{k_{n}}}\left(u_{n}\right)=P^{+} u_{n}-P^{-} u_{n}+b A\left(A u_{n}\right)^{+}-a A\left(A u_{n}\right)^{-}-A f\left(A u_{n}\right) .
$$

Since A is the compact operator, $P^{+} u_{n}-P^{-} u_{n}$ converges strongly, hence $u_{n} \rightarrow u$ strongly and $\nabla I_{b}(u)=0$.
2.2. The first result applying the linking theorem. Fixed Λ_{i}^{-}. We prove the Theorem via a linking argument.

First of all, we introduce a suitable splitting of the space H. Let

$$
Z_{1}=\oplus_{j=i+1}^{\infty} H_{\Lambda_{j}^{-}}, Z_{2}=H_{\Lambda_{i}^{-}}, Z_{3}=\oplus_{j=1}^{i-1} H_{\Lambda_{j}^{-}} \oplus H^{+}
$$

Lemma 2.2. There exists R such that $\sup _{v \in Z_{1} \oplus Z_{2},\|v\|=R} I_{b}(v) \leq 0$.

Proof. If $v \in Z_{1} \oplus Z_{2}$ then

$$
I_{b}(v)=-\frac{1}{2}\|v\|^{2}+\frac{b}{2}\left\|[S v]^{+}\right\|^{2}-\frac{a}{2}\left\|[S v]^{-}\right\|^{2}-\int_{\Omega} F(S v) d t d x .
$$

Since

$$
\begin{aligned}
\frac{b}{2}\left\|[S v]^{+}\right\|^{2} & -\frac{a}{2}\left\|[S v]^{-}\right\|^{2}-\int_{\Omega} F(S v) d t d x \\
& =\int_{\Omega} \frac{b}{2}\left([S v]^{+}\right)^{2}-\frac{1}{p}\left([S v]^{+}\right)^{p}-\frac{a}{2}\left([S v]^{-}\right)^{2}-\frac{1}{q}\left([S v]^{-}\right)^{q} d t d x
\end{aligned}
$$

there exists R such that $\frac{b}{2}\left\|[S v]^{+}\right\|^{2}-\frac{a}{2}\left\|[S v]^{-}\right\|^{2}-\int_{\Omega} F(S v) d t d x \leq 0$ for all $\|v\|=R$. Hence

$$
I_{b}(v) \leq-\frac{1}{2}\|v\|^{2} \leq 0
$$

Lemma 2.3. There exists ρ such that $\inf _{u \in Z_{2} \oplus Z_{3},\|u\|=\rho} I_{b}(u)>0$.
Proof. Let $\sigma \in[0,1]$. We consider the functional $I_{b, \sigma}: Z_{2} \oplus Z_{3} \rightarrow R$ defined by

$$
\begin{aligned}
I_{b, \sigma}(u) & =\frac{1}{2}\left\|P^{+} u\right\|^{2}-\frac{1}{2}\left\|P^{-} u\right\|^{2} \\
& +\frac{b}{2}\left\|[A u]^{+}\right\|^{2}-\frac{a}{2}\left\|[A u]^{-}\right\|^{2}-\sigma \int_{\Omega} F(A u) d t d x .
\end{aligned}
$$

We claim that there exists a ball $B_{\rho}=\left\{u \in Z_{2} \oplus Z_{3} \mid\|u\|<\rho\right\}$ such that

1. $I_{b, \sigma}$ are continuous with respect to σ,
2. $I_{b, \sigma}$ satisfies (P.S) condition,
3. 0 is a minimum for $I_{b, 0}$ in B_{ρ},
4. 0 is the unique critical point of $I_{b, \sigma}$ in B_{ρ}.

Then by a continuation argument of Li-Szulkin's (see[4]), it can be shown that 0 is a local minimum for $\left.I_{b}\right|_{Z_{2} \oplus Z_{3}}=I_{b, 1}$ and Lemma is proved.

The continuity in σ and the fact that 0 is a local minimum for $I_{b, 0}$ are straightforward. To prove (P.S.) condition one can argue as in the previous Lemma, when dealing with I_{b}.

To prove that 0 is isolated we argue by contradiction and suppose that there exists a sequence $\left(\sigma_{n}\right)$ in $[0,1]$ and sequence $\left(u_{n}\right)$ in $Z_{2} \oplus Z_{3}$ such that $\nabla I_{b, \sigma_{n}}\left(u_{n}\right)=0$ for all $n, u_{n} \neq 0$, and $u_{n} \rightarrow 0$. Set $t_{n}=\left\|u_{n}\right\|$ and $\hat{u_{n}}=u_{n} / t_{n}$ then $t_{n} \rightarrow 0$. Let $\hat{v_{n}}=P^{-} \hat{u_{n}}$ and $\hat{w}_{n}=P^{+} \hat{u_{n}}$. Since
$\hat{v_{n}}$ varies in a finite dimensional space, we can suppose that $\hat{v_{n}} \rightarrow \hat{v}$ for some \hat{v}. We get
(4) $\frac{1}{t_{n}} \nabla I_{b, \sigma}\left(u_{n}\right)=\hat{w}_{n}-\hat{v_{n}}$

$$
+\frac{b}{t_{n}} A\left(A u_{n}\right)^{+}-\frac{a}{t_{n}} A\left(A u_{n}\right)^{-}-\frac{\sigma_{n}}{t_{n}} A f\left(A u_{n}\right)=0 .
$$

Multiplying by \hat{w}_{n} yields

$$
\left\|\hat{w}_{n}\right\|^{2}=\frac{\sigma_{n}}{t_{n}} \int_{\Omega} f\left(A u_{n}\right) A \hat{w}_{n} d t d x-\frac{b}{t_{n}} \int_{\Omega}\left(A u_{n}\right)^{+} A \hat{w}_{n} d t d x .
$$

We know that

$$
\begin{aligned}
\int_{\Omega}\left(A u_{n}\right)^{+} A \hat{w}_{n} d t d x & =\int_{\Omega} P^{+}\left(A u_{n}\right)^{+} A \hat{u_{n}} d t d x \\
& =\int_{\Omega} P^{+}\left(A u_{n}\right)^{+}\left(A \hat{u_{n}}\right)^{+} d t d x
\end{aligned}
$$

Since $b>0$, there exists a sequence $\left(\epsilon_{n}\right)$ such that $\epsilon_{n} \rightarrow 0$ and $0<\epsilon_{n}<b$ for all n. That is

$$
\frac{b}{t_{n}} \int_{\Omega}\left(A u_{n}\right)^{+} A \hat{w}_{n} d t d x \geq \frac{\epsilon_{n}}{t_{n}} \int_{\Omega} P^{+}\left(A u_{n}\right)^{+}\left(A \hat{u_{n}}\right)^{+} d t d x
$$

Then

$$
\begin{aligned}
\left\|\hat{w}_{n}\right\|^{2} & \leq \frac{1}{t_{n}} \int_{\Omega} f\left(A u_{n}\right) A \hat{w_{n}} d t d x-\frac{\epsilon_{n}}{t_{n}} \int_{\Omega} P^{+}\left(A u_{n}\right)^{+}\left(A \hat{u}_{n}\right)^{+} d t d x \\
& \leq \int_{\Omega} \frac{\left|f\left(A u_{n}\right)\right|}{t_{n}}\left|A \hat{w}_{n}\right| d t d x+\epsilon_{n} \int_{\Omega}\left|P^{+}\left(A \hat{u_{n}}\right)^{+} \|\left(A \hat{u}_{n}\right)^{+}\right| d t d x
\end{aligned}
$$

Since A is a compact operator

$$
\begin{aligned}
\left|f\left(A u_{n}\right)\right| & =\left|\left\{\left(\left[t_{n} A \hat{u_{n}}\right]^{+}\right)^{p-1}-\left(\left[t_{n} A \hat{u_{n}}\right]^{-}\right)^{q-1}\right\}\right| \\
& \leq t_{n}{ }^{p-1}\left|\left[A \hat{u_{n}}\right]^{+}\right|^{p-1}+t_{n}{ }^{q-1}\left|\left[A \hat{u_{n}}\right]^{-}\right|^{q-1} \\
& \leq t_{n}{ }^{m}\left(M_{1}+t_{n}{ }^{M-m} M_{2}\right)
\end{aligned}
$$

for some M_{1} and M_{2} where $m=\min \{p-1, q-1\}$ and $M=\max \{p-$ $1, q-1\}$. We get that

$$
\int_{\Omega} \frac{\left|f\left(A u_{n}\right)\right|}{t_{n}}\left|A \hat{w}_{n}\right| d x d t \leq t_{n}^{m}\left(M_{1}+t_{n}^{M-m} M_{2}\right) \int_{\Omega}\left|A \hat{w}_{n}\right| d t d x \leq o(1) .
$$

Hence

$$
\begin{equation*}
\left\|\hat{w}_{n}\right\|^{2} \leq o(1)+\epsilon_{n} \int_{\Omega}\left|P^{+}\left(A \hat{u_{n}}\right)^{+} \|\left(A \hat{u_{n}}\right)^{+}\right| d t d x . \tag{5}
\end{equation*}
$$

Since $\int_{\Omega}\left|P^{+}\left(A \hat{u_{n}}\right)^{+}\right|\left|\left(A \hat{u_{n}}\right)^{+}\right| d x d t$ is bounded and equation (5) holds for every $\epsilon_{n}, \hat{w}_{n} \rightarrow 0$ and so $\left(\hat{u_{n}}\right)$ converges. Since $\left|f\left(A u_{n}\right)\right| \leq t_{n}{ }^{m}\left(M_{1}+\right.$ $t_{n}{ }^{M-m} M_{2}$), we get

$$
\frac{\sigma_{n}}{t_{n}}\left|f\left(A u_{n}\right)\right| \leq \frac{1}{t_{n}}\left|f\left(A u_{n}\right)\right| \leq t_{n}{ }^{m-1}\left(\mid M_{1}+t_{n}{ }^{M-m} M_{2}\right) \leq o(1) .
$$

Then $\frac{\sigma_{n}}{t_{n}} A f\left(A u_{n}\right) \rightarrow 0$. From equation (4), ($\left.\hat{v_{n}}\right)$ converges to zero, but this is impossible if $\left\|\hat{u_{n}}\right\|=1$.

Definition 2.2. Let H be an Hilbert space, $Y \subset H, \rho>0$ and $e \in H \backslash Y, e \neq 0$. Set:

$$
\begin{aligned}
B_{\rho}(Y) & =\{x \in Y \mid\|x\| \leq \rho\} \\
S_{\rho}(Y) & =\{x \in Y \mid\|x\|=\rho\} \\
\triangle_{\rho}(e, Y) & =\{\sigma e+v \mid \sigma \geq 0, v \in Y,\|\sigma e+v\| \leq \rho\} \\
\Sigma_{\rho}(e, Y) & =\{\sigma e+v \mid \sigma \geq 0, v \in Y,\|\sigma e+v\|=\rho\} \cup\{v \mid v \in Y,\|v\| \leq \rho\}
\end{aligned}
$$

Theorem 2.1. If $b>0$, then the problem (1) has at least one nontrivial solution.

Proof. Let $e \in Z_{2}$. By Lemma 3.1 and Lemma 3.2, for a suitable large R and a suitable small ρ, we have the linking inequality

$$
\sup I_{b}\left(\Sigma_{R}\left(e, Z_{1}\right)\right)<\inf I_{b}\left(S_{\rho}\left(Z_{2} \oplus Z_{3}\right)\right)
$$

Moreover (P.S. $)_{\gamma}^{*}$ holds. By standard linking arguments, it follows that there exists a critical point u for I_{b} with $\alpha \leq I_{b}(u) \leq \beta$, where $\alpha=$ $\inf I_{b}\left(S_{\rho}\left(Z_{2} \oplus Z_{3}\right)\right)$ and $\beta=\sup I_{b}\left(\Delta_{R}\left(e, Z_{1}\right)\right)$. Since $\alpha>0$, then $u \neq$ 0 .
2.3. The second result applying the linking theorem. We assume in this section that $i \geq 2$ and we set

$$
W_{1}=\oplus_{j=i}^{\infty} H_{\Lambda_{j}^{-}}, W_{2}=\oplus_{j=1}^{i-1} H_{\Lambda_{j}^{-}}, W_{3}=H^{+} .
$$

Notice that $W_{1}=Z_{1} \oplus Z_{2}$ and $W_{2} \oplus W_{3}=Z_{3}$.
Lemma 2.4. $\liminf _{\|u\| \rightarrow+\infty, u \in W_{1} \oplus W_{2}} I_{b}(u) \leq 0$.

Proof. Let $\left(u_{n}\right)_{n}$ be a sequence in $W_{1} \oplus W_{2}$ such that $\left\|u_{n}\right\| \rightarrow \infty$. We set $t_{n}=\left\|u_{n}\right\|$ and $\hat{u_{n}}=u_{n} / t_{n}$. Since S is a compact operator,

$$
\begin{aligned}
& \frac{b}{2} \frac{\left\|\left[S u_{n}\right]^{+}\right\|^{2}}{t_{n}^{2}}-\frac{a}{2} \frac{\left\|\left[S u_{n}\right]^{-}\right\|^{2}}{t_{n}^{2}}-\int_{\Omega} \frac{F\left(S u_{n}\right)}{t_{n}^{2}} d t d x \\
& =\int_{\Omega} \frac{b}{2}\left(\left[S \hat{u_{n}}\right]^{+}\right)^{2}-\frac{t_{n}^{p-2}}{p}\left(\left[S \hat{u_{n}}\right]^{+}\right)^{p}-\frac{a}{2}\left(\left[S \hat{u_{n}}\right]^{-}\right)^{2}-\frac{t_{n}^{q-2}}{q}\left(\left[S \hat{u_{n}}\right]^{-}\right)^{q} d t d x \\
& \rightarrow-\infty .
\end{aligned}
$$

Then
$\frac{I_{b}\left(u_{n}\right)}{\left\|u_{n}\right\|^{2}}=-\frac{1}{2}+\frac{b}{2} \frac{\left\|\left[S u_{n}\right]^{+}\right\|^{2}}{t_{n}^{2}}-\frac{a}{2} \frac{\left\|\left[S u_{n}\right]^{-}\right\|^{2}}{t_{n}^{2}}-\int_{\Omega} \frac{F\left(S u_{n}\right)}{t_{n}^{2}} d t d x \rightarrow-\infty$.
Hence

$$
\liminf _{\|u\| \rightarrow+\infty, u \in W_{1} \oplus W_{2}} I_{b}(u) \leq 0 .
$$

Lemma 2.5. There exists $\hat{\rho}$ such that $\inf I_{b}\left(S_{\hat{\rho}}\left(W_{2} \oplus W_{3}\right)\right)>0$.
Proof. Repeating the same arguments used in 2.3, we get the conclusion.

Theorem 2.2. Let $i \geq 2$. If $b>0$, then the problem (1) has at least two nontrivial solution.

Proof. Using the conclusion of 2.1, we have that there exist a nontrivial critical point u with

$$
I_{b}(u) \leq \sup I_{b}\left(\Delta_{R}\left(e, Z_{1}\right)\right)
$$

where e, R were given in Lemma 3.1 and 3.2. We can choose that $\hat{R} \geq R$. Take any \hat{e} in W_{2}, then we have a second linking inequality,

$$
\sup I_{b}\left(\Sigma_{\hat{R}}\left(\hat{e}, W_{1}\right)\right) \leq \inf I_{b}\left(S_{\hat{\rho}}\left(W_{2} \oplus W_{3}\right)\right)
$$

Since (P.S. $)_{\gamma}^{*}$ holds, there exists a critical point \hat{u} such that

$$
\inf I_{b}\left(S_{\hat{\rho}}\left(W_{2} \oplus W_{3}\right)\right) \leq I_{b}(\hat{u}) \leq \sup I_{b}\left(\Delta_{\hat{R}}\left(\hat{e}, W_{1}\right)\right) .
$$

Since $\hat{R} \geq R$ and $Z_{1} \oplus Z_{2}=W_{1}$,

$$
\Delta_{R}\left(e, Z_{1}\right) \subset B_{\hat{R}}\left(W_{1}\right) \subset \Sigma_{\hat{R}}\left(\hat{e}, W_{1}\right) .
$$

Then

$$
\begin{aligned}
I_{b}(u) & \leq \sup I_{b}\left(\Delta_{R}\left(e, Z_{1}\right)\right) \\
& \leq \sup I_{b}\left(\Sigma_{\hat{R}}\left(\hat{e}, W_{1}\right)\right)<\inf I_{b}\left(S_{\hat{\rho}}\left(W_{2} \oplus W_{3}\right)\right) \leq I_{b}(\hat{u}) .
\end{aligned}
$$

Hence $u \neq \hat{u}$.

3. Solutons of the wave system

In this section we investigate the existence of solutions $(u(t, x), v(t, x))$ of wave system with Dirichlet boundary condition

$$
\begin{array}{cc}
u_{t t}-u_{x x}+\mu g(u+v)=f(u+v) & \text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times R, \\
v_{t t}-v_{x x}+\nu g(u+v)=f(u+v) & \text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times R, \\
u\left(\pm \frac{\pi}{2}, x\right)=0, v\left(\pm \frac{\pi}{2}, x\right)=0, \tag{6}
\end{array}
$$

u and v is π-periodic in t and even in x and t ,
where $g(u)=b u^{+}-a u^{-}$and f is defined by (2).
Theorem 3.1. Let μ, ν be positive constants and let $i \geq 2$. If $b>0$, then the problem (6) has at least two nontrivial solutions.

Proof. We get that

$$
\left(u-\frac{\mu}{\nu} v\right)_{t t}-\left(u-\frac{\mu}{\nu} v\right)_{x x}=\left(1-\frac{\mu}{\nu}\right) f(u+v)
$$

By contraction mapping principle, the problem

$$
\begin{gathered}
u_{t t}-u_{x x}=F \quad \text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times R \\
u\left(\pm \frac{\pi}{2}, x\right)=0
\end{gathered}
$$

has a unique solution. If u_{1} is a solution of $u_{t t}-u_{x x}=\left(1-\frac{\mu}{\nu}\right) f$, then the solution (u, v) of problem (6) satisfies

$$
u-\frac{\mu}{\nu} v=u_{1} .
$$

On the other hand, from problem (6) we get the equation

$$
\begin{gathered}
(u+v)_{t t}-(u+v)_{x x}+(\mu+\nu) g(u+v)=2 f(u+v) \quad \text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times R, \\
u\left(\pm \frac{\pi}{2}, x\right)=0, v\left(\pm \frac{\pi}{2}, x\right)=0,
\end{gathered}
$$

u and v is π-periodic in t and even in x and t .

Put $w=u+v$. Then the above equation is equivalent to

$$
\begin{array}{rr}
w_{t t}-w_{x x}+(\mu+\nu) g(w)=2 f(w) & \text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times R, \\
w\left(\pm \frac{\pi}{2}, x\right)=0, & \tag{7}
\end{array}
$$

w is π-periodic in t and even in x and t .
By Theorem 2.2, equation (7) has at least two nontrivial solution. If w_{1} is a solution of problem (7), then the solution (u, v) of problem (6) satisfies

$$
u+v=w_{1} .
$$

Hence we get the solution (u, v) of problem (6) from the following systems:

$$
\begin{array}{r}
u-\frac{\mu}{\nu} v=u_{1}, \tag{8}\\
u+v=w_{1} .
\end{array}
$$

Since $1+\frac{\mu}{\nu}>0$, system (8) has a unique solution (u, v). Therefore system (6) has at least two nontrivial solutions.

References

[1] Q-heung Choi and Tacksun Jung, Infinitely many solutions of a wave equation with jumping nonlinearity, J. Korean Math. Soc. 37 (2000), 943-956.
[2] Q.H. Choi and T. Jung, An application of a variational reduction method to a nonlinear wave equation, J. Differential Equations 117 (1995), 390-410.
[3] H. Hofer, On strongly indefinite functionals with applications, Trans. Amer. Math. Soc. 275 (1983), 185-214.
[4] S. Li, A. Squlkin, Periodic solutions of an asymptotically linear wave equation, Nonlinear Anal. 1 (1993), 211-230.

Department of General Education
Namseoul University
Chonan, 330-707 Korea
E-mail: hwnam@nsu.ac.kr

