DOI QR코드

DOI QR Code

지오센서 네트워크의 다중 공간질의 최적화를 위한 공간질의처리비용 예측 알고리즘 연구

A Study on Cost Estimation of Spatial Query Processing for Multiple Spatial Query Optimization in GeoSensor Networks

  • Kim, Min Soo (Spatial Information Research Laboratory, ETRI) ;
  • Jang, In Sung (Spatial Information Research Laboratory, ETRI) ;
  • Li, Ki Joune (Dept. of Computer Engineering, Pusan National University)
  • 투고 : 2013.02.07
  • 심사 : 2013.04.10
  • 발행 : 2013.04.30

초록

최근 IoT (Internet of Things) 기술의 발전과 더불어 무선 환경에서 특정 영역에 위치하는 센서노드의 위치-센서정보를 에너지 효율적으로 수집하는 센서 네트워크 기반 공간질의처리에 대한 관심이 크게 증가하고 있다. 그리하여 센서노드에서 공간 필터링을 직접 수행하여 센서노드들 간의 통신 횟수를 감소시켜 에너지 소모를 최소화하는 다양한 공간질의처리 알고리즘 및 분산 공간색인방법들이 제안되어 왔다. 그러나 단일 공간질의처리 최적화에 중점을 두었던 기존 공간색인방법 및 알고리즘들은 IoT 환경에서 다수 사용자에 의하여 요청되는 다중 공간질의를 최적화하여 수행하기에는 한계가 있었다. 이에 본 논문에서는 센서 네트워크에서 다중 공간질의를 에너지 효율적으로 처리할 수 있는 최적화 알고리즘을 제안하고 있다. 제안된 다중 공간질의 최적화 알고리즘은 인접 영역에 주어지는 공간질의들을 통합하여 수행하는 '질의통합' 개념을 기본으로 하고 있다. 최적화 과정에서 질의들의 통합 또는 개별 수행에 대한 판단은 각 수행비용을 예측하여 결정하며, 본 논문에서는 질의처리 비용 예측 방법을 추가적으로 제안하고 있다. 끝으로, 성능평가에서는 GR-tree, SPIX, CPS의 공간색인방법에 대한 비교 실험을 통하여 제안된 알고리즘의 성능 분석결과를 제시하고 있다.

W ith the recent advancement of IoT (Internet of Things) technology, there has been much interest in the spatial query processing which energy-efficiently acquires sensor readings from sensor nodes inside specified geographical area of interests. Therefore, various kinds of spatial query processing algorithms and distributed spatial indexing methods have been proposed. They can minimize energy consumption of sensor nodes by reducing wireless communication among them using in-network spatial filtering technology. However, they cannot optimize multiple spatial queries which w ill be w idely used in IoT, because most of them have focused on a single spatial query optimization. Therefore, we propose a new multiple spatial query optimization algorithm which can energy-efficiently process multiple spatial queries in a sensor network. The algorithm uses a concept of 'query merging' that performs the merged set after merging multiple spatial queries located at adjacent area. Here, our algorithm makes a decision on which is better between the merged and the separate execution of queries. For such the decision making, we additionally propose the cost estimation method on the spatial query execution. Finally, we analyze and clarify our algorithm's distinguished features using the spatial indexing methods of GR-tree, SPIX, CPS.

키워드

참고문헌

  1. Crespo. A. 2003, Query merging: improving query subscription processing in a multicast environment, IEEE Transaction on Knowledge and Data Engineering, 15(1):174-191. https://doi.org/10.1109/TKDE.2003.1161589
  2. Demirbas. M; Ferhatosmanoglu. H. 2003, Peerto-Peer Spatial Queries in Sensor Networks, Proc. 3rd Int'l Conference on Peer-to-Peer Computing, 32-39.
  3. Demirbas. M; Lu, X. 2007, Distributed Quad -Tree for Spatial Querying in Wireless Sensor Networks, Proc. IEEE Int'l Conference on Communications, 3325-3332.
  4. Kim. M. S; Jang. I. S. 2011, The GR-tree: An Energy-Efficient Distributed Spatial Indexing Scheme in Wireless Sensor Networks, Journal of Korea Spatial Information Society, 19(5):63-74.
  5. Kim. M. S; Kim. J. W; Kim. M. H. 2008, Semijoin-Based Spatial Join Processing in Multiple Sensor Networks, ETRI Journal, 30(6):853-855. https://doi.org/10.4218/etrij.08.0208.0206
  6. Kim. M. S; Lee. C. H. 2012, A Middleware System for Efficient Acquisition and Management of Heterogeneous Geosensor Networks Data, Journal of Korea Spatial Information System Society, 20(1):91-103.
  7. Lee. C. K; Zheng. B; Lee. W; Winter. J. 2007, Materialized In-Network View for Spatial Aggregation Queries in Wireless Sensor Network, ISPRS Journal of Photogrammetry & Remote Sensing, 62(5):382-402. https://doi.org/10.1016/j.isprsjprs.2007.03.006
  8. Meka. A; Singh. A. 2005, DIST: A Distributed Spatio-temporal Index Structure for Sensor Networks, Proc. ACM CIKM, 139-146.
  9. Park. K; Lee. B; Elmasri. R. 2007, Energy Efficient Spatial Query Processing in Wireless Sensor Networks, Proc. 21st Int'l Conference on Advanced Information Networking and Applications Workshops, 719-724.
  10. Sharifzadeh. M.; Shahabi. C. 2004, Supporting Spatial Aggregation in Sensor Network Databases, Proc. 12th ACM Int'l Workshop on Geographic Information Systems, 166-175.
  11. Soheili. A; Kalogeraki. V; Gunopulos. D. 2005, Spatial Queries in Sensor Networks, Proc. 14th ACM Int'l Workshop on Geographic Information Systems, 61-70.
  12. Trigoni. N; Yao. Y; Demers. A; Gehrke. J; Rajaraman. R. 2005, Multi-query Optimization for Sensor Networks, Proc. IEEE DCOSS'05, LNCS 3560, 307-321.
  13. Xiang. S; Lim. H. B; Tan. K. L; Zhou. Y. 2007, Two-Tier Multiple Query Optimization for Sensor Networks, Proc. ICDCS'07, 39-45.
  14. Yoon. M; Kim. Y. K; Bista. R; Chang. J. W. 2010, A Data Aggregation Scheme based on Designated Path for Efficient Energy Management of Sensor Nodes in Geosensor Networks, Journal of Korea Spatial Information System Society, 12(1):10-17.