Abstract
The components of concrete track (rail and rail fastening system) in railway bridge deck ends are damaged and deteriorated by track-bridge interaction forces such as uplift forces and compression forces owing to their structural flexural characteristics (bridge end rotation). This had led to demand for alternatives to improve structural safety and serviceability. In this study, the authors aim to develop a transition track to enhance the long term workability and durability of concrete track components in railway bridge deck ends and thereby improve the performance of concrete track. A time-history analysis and a three-dimensional finite element method analysis were performed to consider the train speed and the effect of multiple train loads and the results were compared with the performance requirements and German standard for transition track. Furthermore, two specimens, a normal concrete track and a transition track, were fabricated to evaluate the effects of application of the developed transition track, and static tests were conducted. From the results, the track-bridge interaction force acting on the track components (rail displacement, rail stress, and clip stress) of the railway bridge deck end were significantly reduced with use of the developed transition track compared with the non-transition track specimen.
콘크리트궤도가 부설된 철도교량 단부의 궤도구성품(레일 및 체결구)에는 교량 단부회전에 의해 상향력 및 압축력과 같은 궤도-교량의 상호작용력이 작용하여 손상 및 성능저하가 유발된다. 이러한 교량의 휨거동에 기인한 단부 궤도의 상호작용에 따른 문제를 해결하고자 본 연구에서는 횡단궤도시스템을 개발하고 그 성능을 입증하였다. 횡단궤도시스템의 구조안정성 검토를 위해 3차원 유한요소해석을 통한 시간이력해석을 실시하고 그 결과를 독일의 성능요구조건 및 관련기준과 비교하였다. 또한, 교량-궤도 상호작용 분석을 위한 시험체를 제작하여 실내시험을 수행하고 횡단궤도시스템의 적용 효과를 평가하였다. 연구결과 횡단궤도시스템의 정, 동적 구조안정성 및 횡단궤도 적용 후 교량 단부 궤도의 상호작용력(레일변위, 레일저부응력 및 체결구 응력)이 크게 저감될 수 있음을 실험적으로 입증하였다.