DOI QR코드

DOI QR Code

Preparation of Graphene/Waterborne Polyurethane Nanocomposite through in-situ Polymerization

In-situ 중합을 통한 그래핀/수분산 폴리우레탄 나노 복합체 제조

  • Cha, Ji-Jung (Division of Advenced Materials Engineering, Kongju National University) ;
  • Yim, Jin-Heong (Division of Advenced Materials Engineering, Kongju National University)
  • 차지정 (공주대학교 천안공과대학 신소재공학부) ;
  • 임진형 (공주대학교 천안공과대학 신소재공학부)
  • Received : 2013.02.18
  • Accepted : 2013.03.14
  • Published : 2013.07.25

Abstract

A graphene/waterborne polyurethane (WPU) nano composite was prepared by in-situ polymerization of PU and graphene having isocyanate (iGO) group in order to improve physicochemical/electrical characteristics. The properties of the graphene/WPU nanocomposite can effectively be enhanced as compared pristine WPU; up to 57% of tensile strength and $10^2$ fold of electrical conductivity with introduction of 2 wt% graphene. In addition, mechanical/electrical properties of the graphene/WPU nanocompsite were higher than those of graphene/WPU composite prepared by a simple physical blend method. It might attribute to homogeneous dispersion of iGO in the WPU matrix via covalent bonds and hydrogen bonds between WPU and iGO from the results of morphological analysis by scanning electron microscopy (SEM).

수분산 폴리우레탄(waterborne polyurethane; WPU)의 물리화학적/전기적 특성을 개선하기 위하여 그래핀에 이소시아네이트기를 도입하고 in-situ 방법으로 폴리우레탄을 중합하여 그래핀/WPU 나노 복합체를 제조하였다. 본 연구의 접근 방법으로 그래핀을 2 wt%까지 그래핀/WPU 나노 복합체에 도입하면 기존 WPU에 비해 인장강도가 57%, 전기전도도는 약 $10^2$배 정도 향상되는 결과를 얻었다. 또한 단순 블렌드 방법으로 만든 그래핀/WPU 복합체와 비교하였을 때, in-situ 중합 방법으로 제조된 복합체가 상대적으로 우수한 기계적 물성과 전기 전도도를 가졌다. 이것은 전자현미경을 이용한 복합체 단면의 형태학적 분석으로부터 이소시아네이트기가 개질된 그래핀(iGO)이 in-situ 중합 방법에 기인한 WPU 매트릭스와의 공유결합과 수소결합을 통하여 균일하게 분산되었기 때문이다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, Angew. Chem. Int. Ed., 48, 7752 (2009). https://doi.org/10.1002/anie.200901678
  2. H. Hu, X. Wang, J. Wang, L. Wan, F. Liu, H. Wheng, R. Chen, and C. Xu, Chem. Phys. Lett., 484, 247 (2010). https://doi.org/10.1016/j.cplett.2009.11.024
  3. J. Kim, H. Im, J. Han, and J. Kim, Polymer(Korea), 36, 22 (2011).
  4. H. Kim, Y. Miura, and C. W. Macosko, Chem. Mater., 22, 3441 (2010). https://doi.org/10.1021/cm100477v
  5. D. Cai, J. Jin, K. Yusoh, R. Rafiq, and M. Song, Compos. Sci. Technol., 72, 702 (2012). https://doi.org/10.1016/j.compscitech.2012.01.020
  6. Z. Chen and H. Lu, J. Mater. Chem., 22, 12479 (2011).
  7. J. Biscoe and B. E. Warren, J. Appl. Phys., 13, 364 (1942). https://doi.org/10.1063/1.1714879
  8. H. C. Schniepp, J.-L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud’homme, R. Car, D. A. Saville, and I. A. Aksay, J. Phys. Chem. B, 110, 8535 (2006).
  9. M. J. Mcallister, J.-L. Li, D. H. Admson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud'homme, and I. A. Aksay, Chem. Mater., 19, 4396 (2007). https://doi.org/10.1021/cm0630800
  10. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon, 45, 1558 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
  11. H.-K. Jeong, Y. P. Lee, R. J. W. E. Lahaye, M.-H. Park, K. H. An, I. J. Kim, C.-W. Yang, C. Y. Park, R. S. Ruoff, and Y. H. Lee, J. Am. Chem. Soc., 130, 1632 (2008).
  12. H.-G. Moon and J.-H. Chang, Polymer(Korea), 35, 265 (2011).
  13. A. V. Raghu, Y. R. Lee, H. M. Jeong, and C. M. Shin, Macromol. Chem. Phys., 209, 2487 (2008). https://doi.org/10.1002/macp.200800395
  14. U. Khan, P. May, A. O’Neill, and J. N. Coleman, Carbon, 48, 4035 (2010). https://doi.org/10.1016/j.carbon.2010.07.008
  15. J. T. Choi, D. H. Kim, K. S. Ryu, H.-I. Lee, H. M. Jeong, C. M. Shin, J. H. Kim, and B. K. Kim, Macromol. Res., 19, 809 (2011). https://doi.org/10.1007/s13233-011-0801-4
  16. Y. R. Lee, A. V. Raghu, H. M. Jeong, and B. K. Kim, Macromol. Chem. Phys., 210, 1247, (2009). https://doi.org/10.1002/macp.200900157
  17. X. Wang, Y. Hu, L. Song, H. Yang, W. Xing, and H. Lu, J. Mater. Chem., 21, 4222 (2011). https://doi.org/10.1039/c0jm03710a
  18. B. K. Kim and J. C. Lee, J. Polym. Sci. Part A: Polym. Chem., 34, 1095 (1996). https://doi.org/10.1002/(SICI)1099-0518(19960430)34:6<1095::AID-POLA19>3.0.CO;2-2
  19. G. Jimenez, S. Asai, A. Shishido, and M. Sumita, Eur. Polym. J., 36, 2039 (2000). https://doi.org/10.1016/S0014-3057(99)00241-4
  20. L.-H. Bao, Y.-J. Lan, and S.-F. Zhang, J. Polym. Res., 13, 507 (2006). https://doi.org/10.1007/s10965-006-9073-7
  21. M. Melchiors, M. Sonntag, C. Kobusch, and E. Jurgens, Prog. Org. Coat., 40, 99 (2000). https://doi.org/10.1016/S0300-9440(00)00123-5
  22. Z. W. Wicks, Jr., D. A. Wicks, and J. W. Rosthauser, Prog. Org. Coat., 44, 161 (2002). https://doi.org/10.1016/S0300-9440(02)00002-4
  23. S. G. Kang, C. J. Park, J. S. Jang, and H. Ryu, J. Korean. Ind. Eng. Chem., 13, 46 (2002).
  24. J.-W. Lim and J.-H. Yim, Polymer(Korea), 33, 569 (2009).
  25. J.-W. Lim, H.-J. Oh, K.-W. Jeong, J.-H. Yim, and Y. S. Ko, Polymer(Korea), 34, 507 (2010).
  26. H.-C. Kuan, C.-C. M. Ma, W.-P. Chang, S.-M. Yuen, H.-H. Wu, and T.-M. Lee, Comp. Sci. Technol., 65, 1703 (2005). https://doi.org/10.1016/j.compscitech.2005.02.017
  27. W. S. Hummers, Jr., and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
  28. K. S. Choi, F. Liu, J. S. Choi, and T. S. Seo, Langmuir, 26, 12902 (2010). https://doi.org/10.1021/la101698j
  29. L. An, Y. Pan, X. Shen, H. Lu, and Y. Yang, J. Mater. Chem., 18, 4928 (2008). https://doi.org/10.1039/b805849k