DOI QR코드

DOI QR Code

Fabrication and Medical Applications of Lotus-leaf-like Structured Superhydrophobic Surfaces

연잎 모사 구조로의 초소수성 표면 처리와 의료분야의 적용에 관한 연구

  • Lim, Jin Ik (Division of Life and Health Sciences, Biomaterials Research Center, Korea Institute of Science and Technology) ;
  • Kim, Seung Il (Division of Life and Health Sciences, Biomaterials Research Center, Korea Institute of Science and Technology) ;
  • Jung, Youngmee (Division of Life and Health Sciences, Biomaterials Research Center, Korea Institute of Science and Technology) ;
  • Kim, Soo Hyun (Division of Life and Health Sciences, Biomaterials Research Center, Korea Institute of Science and Technology)
  • 임진익 (한국과학기술연구원 의공학연구소 생체재료 연구단) ;
  • 김승일 (한국과학기술연구원 의공학연구소 생체재료 연구단) ;
  • 정영미 (한국과학기술연구원 의공학연구소 생체재료 연구단) ;
  • 김수현 (한국과학기술연구원 의공학연구소 생체재료 연구단)
  • Received : 2013.05.03
  • Accepted : 2013.05.23
  • Published : 2013.07.25

Abstract

Various biomaterials have been widely used for biomedical applications, including bio-organs, medical devices, and clinical devices like vessel, blood pumps, artificial kidneys and hearts, even in contact with blood. The issue of blood compatibility has been studied intensively to prevent negative effects such as thrombosis due to the implanted devices. The use of lotus-leaf-like structured surfaces has been extended to an increasing number of applications such as contamination prevention and anticorrosion applications. Various methods such as template, sol-gel transition, layer-by-layer, and other methods, developed for the fabrication of lotus-leaf-like surfaces have been reported for major industrial applications. Recently, the non-wettable character of these surfaces has been shown to be useful for biomedical applications ranging from blood-vessel replacement to antibacterial surface treatment. In this review, we provide a summary of current and future research efforts and opportunities in the development and medical applications of lotus-leaf-like structure surfaces.

다양한 생체재료들이 이식용 인공장기나 의료용 장비로 폭넓게 사용되고 있으나 혈액과 접촉하는 경우가 많아짐으로써 발생되는 혈전의 문제로 인해 이식재와 혈액간의 혈액 친화성의 향상이 연구자들에게 관심의 대상이 되고 있다. 연잎의 표면구조는 항 오염 특성이라는 측면에서 많은 연구가 진행되어 왔으며, 산업적인 용도로 적용하고자 하는 주된 시도들이 있어 왔다. 대부분 주형법이나 졸-젤 방법, 층 쌓기 방법 등을 포함한 다양한 기법으로 표면처리를 함으로써 인위적인 모사가 가능해 왔다. 최근에 들어 이러한 표면의 초소수성 성질이 의료용 재료의 표면처리 기법으로써 혈관 이식재에서부터 항 박테리아용 표면에까지 널리 적용하려는 시도가 진행되고 있다. 본 리뷰논문에서는 최근 많이 사용되는 연잎 구조로의 표면처리 기법들을 중심으로 요약하였으며, 이들을 이용한 의료분야로의 적용 시도들을 정리하고자 하였다.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. C. M. Agrawal, K. F. Haas, D. A. Leopold, and H. G. Clark, Biomaterials, 13, 176 (1992). https://doi.org/10.1016/0142-9612(92)90068-Y
  2. K. M. Sedlarik, P. B. van Wachem, H. Bartels, and J. M. Schakenraad, Biomaterials, 11, 4 (1990). https://doi.org/10.1016/0142-9612(90)90043-P
  3. J. C. A. Palmaz, J. Roentgenol., 160, 613 (1993). https://doi.org/10.2214/ajr.160.3.8430566
  4. K. T. Kurpinski, J. T. Stephenson, R. R. R. Janairo, H. Lee, and S. Li, Biomaterials, 31, 3536 (2010). https://doi.org/10.1016/j.biomaterials.2010.01.062
  5. H. Shen, X. X. Hu, F. Yang, J. Z. Bei, and S. G. Wang, Biomaterials, 28, 4219 (2007). https://doi.org/10.1016/j.biomaterials.2007.06.004
  6. H. Shen, X. X. Hu, F. Yang, J. Z. Bei, and S. G. Wang, Acta Biomater., 6, 455 (2010). https://doi.org/10.1016/j.actbio.2009.07.016
  7. Y. P. Yiann, in Structural and Dynamic Properties of Lipids and Membranes, P. J. Quinn, and R. Cherry, Editors, Portland Press, London, UK, p187 (1992).
  8. C. D. Forbes, and J. M. Courtney, Scot. Med. J., 40, 99 (1995). https://doi.org/10.1177/003693309504000401
  9. J. M. Courtney and C. D. Forbes, Brit. Med. Bull., 50, 966 (1994). https://doi.org/10.1093/oxfordjournals.bmb.a072937
  10. S. Sundaram, H. Q. Yin, and C. D. Forbes, Vasc. Med. Rev., 5, 42 (1994).
  11. J. M. Courtney, N. M. K. Lamba, S. Sundaram, and C. D. Forbes, Biomaterials, 15, 737 (1994). https://doi.org/10.1016/0142-9612(94)90026-4
  12. T. A. Horbett, Cardiovasc. Pathol., 2, 137 (1993).
  13. J. L. Brash and T. A. Horbett, Proteins at Interfaces II, J. L. Brash, and T. A. Horbett, Editors, ACS Symposium Series, American Chemical Society, Washington, DC, USA, Vol 602, p 1 (1995).
  14. W. B. Tsai, J. M. Grunkemeier, and T. A. Horbett, J. Biomed. Mater. Res., 44, 130 (1999). https://doi.org/10.1002/(SICI)1097-4636(199902)44:2<130::AID-JBM2>3.0.CO;2-9
  15. J. D. Andrade, S. Nagaoka, S. L. Cooper, T. Okano, and S. W. Kim, ASAIO J., 10, 75 (1987).
  16. K. Ishihara, T. Tsuruta, T. Hayashi, K. Kataoka, K. Ishihara, and Y. Kimura, Editors, in Biomedical Applications of Polymeric Materials, CRC Press, Boca Raton, FL, p 89 (1993).
  17. B. D. Ratner, J. Biomater. Sci. Polym. Ed., 11, 1107 (2000). https://doi.org/10.1163/156856200744219
  18. R. Langer and J. P. Vacanti, Science, 260, 920 (1993). https://doi.org/10.1126/science.8493529
  19. Y. H. Kim, K. D. Park, and D. K. Han, in Polymeric Materials Encyclopedia, J. C Salamone, Editor, CRC Press, Boca Raton, FL, p 825 (1996).
  20. S. W. Kim and J. Feijen, CRC Crit. ReV. Biocompat., 1, 229 (1985).
  21. P. Olsson, J. Sanchez, T. E. Mollnes, and J. J. Riesenfeld, J. Biomater. Sci. Polym. Ed., 11, 1261 (2000). https://doi.org/10.1163/156856200744192
  22. L. Gao and T. J. McCarthy, Langmuir, 25, 1410 (2009).
  23. C. R. Crick and I. P. Parkin, Chem.-Eur. J., 16, 3568 (2010). https://doi.org/10.1002/chem.200903335
  24. W. L. Song, D. D. Veiga, C. A. Custodio, and J. F. Mano, Adv. Mater., 21, 1830 (2009). https://doi.org/10.1002/adma.200803680
  25. X. Zhang, F. Shi, J. Niu, Y. Jiang, and Z. Wang, J. Mater. Chem., 18, 621 (2008). https://doi.org/10.1039/b711226b
  26. J. I. Lim, S. I. Kim, and S. H. Kim, Colloid. Surf. B: Biointerfaces, 103, 463 (2013). https://doi.org/10.1016/j.colsurfb.2012.11.016
  27. E. S. Leibner, N. Barnthip, W. Chen, C. R. Baumrucker, J. V. Badding, M. Pishko, and E. A. Vogler, Acta Biomater., 5, 1389 (2009). https://doi.org/10.1016/j.actbio.2008.11.003
  28. Y. L. Wang, C. E. Sims, P. Marc, M. Bachman, G. P. Li, and N. L. Allbritton, Langmuir, 22, 8257 (2006). https://doi.org/10.1021/la061602k
  29. M. Ma and R. M. Hill, Curr. Opin. Colloid Interface Sci., 11, 193 (2006). https://doi.org/10.1016/j.cocis.2006.06.002
  30. W. Lee, M. K. Jin, W. C. Yoo, and J. K. Lee, Langmuir, 20, 7665 (2004). https://doi.org/10.1021/la049411+
  31. K. Acatay, E. Simsek, C. O. Yang, and Y. Z. Menceloglu, Angew. Chem. Int. Ed., 43, 5210 (2004). https://doi.org/10.1002/anie.200461092
  32. Q. D. Xie, G. Q. Fan, N. Zhao, X. L. Guo, J. Xu, J. Y. Dong, L. Y. Zhang, Y. J. Zhang, and C. C. Han, Adv. Mater., 16, 1830 (2004). https://doi.org/10.1002/adma.200400074
  33. N. Zhao, Q. D. Xie, L. H. Weng, S. Q. Wang, X. Y. Zhang, and J. Xu, Macromolecules, 38, 8996 (2005). https://doi.org/10.1021/ma051560r
  34. Z. Yoshimitsu, A. Nakajima, T. Watanabe, and K. Hashimoto, Langmuir, 18, 5818 (2002). https://doi.org/10.1021/la020088p
  35. L. Jiang, Y. Zhao, and J. Zhai, Angew. Chem. Int. Ed., 43, 4338 (2004). https://doi.org/10.1002/anie.200460333
  36. Y. Yao, X. Dong, S. Hong, H. Ge, and C. C. Han, Macromol. Rapid Commun., 27, 1627 (2006). https://doi.org/10.1002/marc.200600415
  37. K. Tsujii, T. Yamamoto, T. Onda, and S. Shibuchi, Angew. Chem. Int. Ed. Engl., 36, 1011 (1997). https://doi.org/10.1002/anie.199710111
  38. R. Buzio, C. Boragno, F. Biscarini, F. B. D. Mongeot, and U. Valbusa, Nat. Mater., 2, 233 (2003). https://doi.org/10.1038/nmat855
  39. K. Teshima, H. Sugimura, Y. Inoue, O. Takai, and A. Takano, Appl. Surf. Sci., 244, 619 (2005). https://doi.org/10.1016/j.apsusc.2004.10.143
  40. T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, Langmuir, 22, 4917 (2006). https://doi.org/10.1021/la053374k
  41. Z. Guo, F. Zhou, J. Hao, and W. Liu, J. Colloid Interface Sci., 303, 298 (2006). https://doi.org/10.1016/j.jcis.2006.06.067
  42. Y. Kwon, N. Patankar, J. Choi, and J. Lee, Langmuir, 25, 6129 (2009). https://doi.org/10.1021/la803249t
  43. D. Oner and T. J. McCarthy, Langmuir, 16, 7777 (2000). https://doi.org/10.1021/la000598o
  44. Z. Yoshimitsu, A. Nakajima, T. Watanabe, and K. Hashimoto, Langmuir, 18, 5818 (2002). https://doi.org/10.1021/la020088p
  45. Y. C. Jung and B. Bhushan, Langmuir, 25, 9208 (2009). https://doi.org/10.1021/la900761u
  46. S. M. Lee and T. H. Kwon, J. Micromech. Microeng., 17, 687 (2007). https://doi.org/10.1088/0960-1317/17/4/003
  47. J. Z. Wang, Z. H. Zheng, H. W. Li, W. T. S. Huck, and H. Sirringhaus, Nat. Mater., 3, 171 (2004). https://doi.org/10.1038/nmat1073
  48. R. Furstner, W. Barthlott, C. Neinhuis, and P. Walzel, Langmuir, 21, 956 (2005). https://doi.org/10.1021/la0401011
  49. X. M. Zhang, J. H. Zhang, Z. Y. Ren, X. Li, X. Zhang, D. Zhu, T. Wang, T. Tian, and B. Yang, Langmuir, 25, 7375 (2009). https://doi.org/10.1021/la900258e
  50. P. Roach, N. J. Shirtcliffe, and M. I. Newton, Soft Matter, 4, 224 (2008). https://doi.org/10.1039/b712575p
  51. C. J. Ingham, J. ter Maat, and W. M. de Vos, Biotechnol. Adv., 30, 1089 (2012). https://doi.org/10.1016/j.biotechadv.2011.08.005
  52. D. Kim, W. Hwang, H. C. Park, and K. H. Lee, Curr. Appl. Phys., 8, 770 (2008). https://doi.org/10.1016/j.cap.2007.04.056
  53. C. Mao, C. Liang, W. Luo, J. Bao, J. Shen, X. Hou, and W. Zhao, J. Mater. Chem., 19, 9025 (2009). https://doi.org/10.1039/b912314h
  54. G. Decher, J. D. Hong, and J. Schmitt, Thin Solid Films, 831, 210 (1992).
  55. G. Decher, Science, 277, 1232 (1997). https://doi.org/10.1126/science.277.5330.1232
  56. F. Shi, Z. Q. Wang, and X. Zhang, Adv. Mater., 17, 1005 (2005). https://doi.org/10.1002/adma.200402090
  57. N. Zhao, F. Shi, Z. Q. Wang, and X. Zhang, Langmuir, 21, 4713 (2005). https://doi.org/10.1021/la0469194
  58. X. L. Zheng, J. B. Weng, B. H. Hu, X. Z. Lv, D. L. Meng, and A. S. C. Chan, Mater. Chem. Phys., 130, 1054 (2011). https://doi.org/10.1016/j.matchemphys.2011.08.032
  59. Y. Zhao, M. Li, Q. H. Lu, and Z. Y. Shi, Langmuir, 24, 12651 (2008). https://doi.org/10.1021/la8024364
  60. A. M. Brozell, M. A. Muha, A. Abed-Amoli, D. Bricarello, and A. N. Parikh, Nano Lett., 7, 3822 (2007). https://doi.org/10.1021/nl072483b
  61. H. Yang and P. Jiang, J. Colloid Interface Sci., 352, 558 (2010). https://doi.org/10.1016/j.jcis.2010.08.070
  62. R. N. Wenzel, Ind. Eng. Chem., 28, 988 (1936). https://doi.org/10.1021/ie50320a024
  63. A. B. D. Cassie and S. Baxter, Trans Faraday Soc., 40, 546 (1944). https://doi.org/10.1039/tf9444000546
  64. Y. Y. Liu, X. Q. Chen, and J. H. Xin, Nanotechnology, 17, 3259 (2006). https://doi.org/10.1088/0957-4484/17/13/030
  65. H. M. Shang, Y. Wang, S. J. Limmer, T. P. Chou, K. Takahashi, and G. Z. Cao, Thin Solid Films, 472, 37 (2005). https://doi.org/10.1016/j.tsf.2004.06.087
  66. K. Tadanaga, N. Katata, and T. Minami, J. Am. Ceram. Soc., 80, 1040 (1997).
  67. J. Wang, C. R. Zhang, and J. Feng, Acta Physico-Chim., 20, 1399 (2004).
  68. Q. Zhang and G. Cao, Nano Today, 6, 91 (2011). https://doi.org/10.1016/j.nantod.2010.12.007
  69. Y. Dzenis, Science, 304, 1917 (2004). https://doi.org/10.1126/science.1099074
  70. M. L. Ma, R. M. Hill, J. L. Lowery, S. V. Fridrikh, and G. C. Rutledge, Langmuir, 21, 5549 (2005). https://doi.org/10.1021/la047064y
  71. M. Kang, R. Jung, H. S. Kim, and H. J. Jin, Colloids and Surfaces A: Physicochem. Eng. Aspects, 313, 411 (2008).
  72. X. Wang, B. Ding, J. Yu, and M. Wang, Nano Today, 6, 510 (2011). https://doi.org/10.1016/j.nantod.2011.08.004
  73. E. K. Kim, C. S. Lee, and S. S. Kim, J. Colloid Interface Sci., 368, 599 (2012). https://doi.org/10.1016/j.jcis.2011.11.047
  74. J. F. Zheng, A. H. He, J. X. Li, J. A. Xu, and C. C. Han, Polymer, 47, 7095 (2006). https://doi.org/10.1016/j.polymer.2006.08.019
  75. A. J. Schrauth and N. P. Suh, "Axiomatic Design of Non-wetting Hemocompatible Surfaces", in Proceedings of 4th International Conference on Axiomatic Design, Firenze, Italy (2006).
  76. M. Zhou, J. Yang, X. Ye, A. Zheng, G. Li, P. Yang, Y. Zhu, and L. Cai, J. Nano Res., 2, 129 (2008). https://doi.org/10.4028/www.scientific.net/JNanoR.2.129
  77. H. Im, Y. B. Park, J. Suk, M. Im, C. O. Joe, and Y. K. Choi, 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences Groningen, The Netherlands, 3-7 October (2010).
  78. X. Hou, X. Wang, Q. Zhu, J. Bao, C. Mao, L. Jiang, and J. Shen, Colloid. Surf. B: Biointerfaces, 80, 247 (2010). https://doi.org/10.1016/j.colsurfb.2010.06.013
  79. M. M. Black, P. J. Drury, and W. B. Tindale, J. Royal Soc. Med., 76, 667 (1983).
  80. D. Medart, U. Steinseifer, H. Reul, and T. Schmitz-Rode, J. Heart Valve Dis., 15, 710 (2006).
  81. X. Ye, Y. Shao, M. Zhou, J.Li, and L. Cai, Appl. Surf. Sci., 255, 6686 (2009). https://doi.org/10.1016/j.apsusc.2009.02.068
  82. E. A. Araujo, N. J. de Andrade, L. H. M. da Silva, A. F. de Carvalho, C. A. de Sa Silva, and A. M. Ramos, Food Bioprocess Technol., 3, 321 (2010). https://doi.org/10.1007/s11947-009-0290-z
  83. N. Fong, A. Simmons, and L. A. Poole-Warren, Acta Biomater., 6, 2554 (2010). https://doi.org/10.1016/j.actbio.2010.01.005
  84. S. Noimark, C. W. Dunnill, M. Wilson, and I. P. Parkin, Chem. Soc. Rev., 38, 3435 (2009). https://doi.org/10.1039/b908260c
  85. O. Ozturk, M. Sudagidan, and U. Turkan, J. Biomed. Mater. Res. A, 81a, 663 (2007). https://doi.org/10.1002/jbm.a.31037
  86. F. Poncin-Epaillard, J. M. Herry, P. Marmey, G. Legeay, D. Debarnot, and M. N. Bellon-Fontaine, Mater. Sci. Eng. C, 33, 1152 (2013). https://doi.org/10.1016/j.msec.2012.12.020
  87. C. Sousa, D. Rodrigues, R. Oliveira, W. Song, J. F. Mano, and J. Azeredo, AMB Express, 1, 1 (2011). https://doi.org/10.1186/2191-0855-1-1
  88. Q. Huang, L. Lin, Y. Yang, R. Hu, E. A. Vogler, and C. Lin, Biomaterials, 33, 8213 (2012). https://doi.org/10.1016/j.biomaterials.2012.08.017
  89. C. R. Crick, S. Ismail, J. Pratten, and I. P. Parkin, Thin Solid Films, 519, 3722 (2011). https://doi.org/10.1016/j.tsf.2011.01.282

Cited by

  1. A Faster Approach to Stereocomplex Formation of High Molecular Weight Polylactide Using Supercritical Dimethyl Ether vol.39, pp.3, 2015, https://doi.org/10.7317/pk.2015.39.3.453
  2. Tree-like cellulose nanofiber membranes modified by citric acid for heavy metal ion (Cu2+) removal pp.1572-882X, 2018, https://doi.org/10.1007/s10570-018-2138-z
  3. Preparation and characterization of tree-like cellulose nanofiber membranes via the electrospinning method vol.183, pp.None, 2013, https://doi.org/10.1016/j.carbpol.2017.11.032
  4. Electrospinning production of nanofibrous membranes vol.17, pp.2, 2013, https://doi.org/10.1007/s10311-018-00838-w
  5. Reduced angle sensitivity of structural coloration on an industrial aluminium platform vol.136, pp.3, 2013, https://doi.org/10.1111/cote.12466
  6. Dual-functional anti-adhesion barrier prepared using micro-hierarchical structured and neutralized shellac films for drug release vol.31, pp.17, 2013, https://doi.org/10.1080/09205063.2020.1795460
  7. Potential of Superhydrophobic Surface for Blood-Contacting Medical Devices vol.22, pp.7, 2013, https://doi.org/10.3390/ijms22073341
  8. Micro/Nanopatterned Superhydrophobic Surfaces Fabrication for Biomolecules and Biomaterials Manipulation and Analysis vol.12, pp.12, 2013, https://doi.org/10.3390/mi12121501