골관절염 랫드 모델에서 계피의 연골보호 효과

Chondroprotective Effects of Cinnamomum cassia Blume in a Rat Model of Osteoarthritis

  • 김명환 (충북대학교 수의과대학 동물의료센터) ;
  • 강성수 (전남대학교 수의과대학) ;
  • 김근형 (충북대학교 수의과대학 동물의료센터) ;
  • 최석화 (충북대학교 수의과대학 동물의료센터)
  • 심사 : 2013.04.16
  • 발행 : 2013.06.30

초록

본 연구는 내측반월판 절제와 전십자인대 단열로 유발된 랫드 골관절염 모델을 이용하여 계피 (Cinnamomum cassia Blume, 육계(肉桂)) 추출물의 연골손상 방지에 대한 효과를 평가하였다. 골관절염유발 랫드 48마리를 군당 8마리씩 6군으로 음성 대조군과 골관절염 대조군, 체중당 diclofenac 2 mg 투여군, 계피 추출물 25 mg과 50 mg, 100 mg 투여군으로 각각 분류하여 수술 1주 후부터 12주동안 투여하였다. 연골 소실과 관절의 불안정성은 계피 추출물과 diclofenac 투여군이 골관절염 대조군과 비교할 때 유의하게 감소하였다(p < 0.05). 병리조직학적 평가에서 연골의 퇴행은 계피 추출물 투여량에 따라 용량 의존적으로 개선됨이 확인되었다(p < 0.01). 계피 추출물 투여군에서 관절구조 퇴행성 변화의 감소와 Safranin-O 염색 정도의 용량 의존적인 증가를 보여 연골 퇴행이 억제됨을 확인하였다. Diclofenac이 골관절염 진행에 있어 활성화된 caspase-3와 절단된 poly(ADP-ribose) 중합효소에 유도된 세포자멸사 표지율 증가에 별 다른 영향을 주지 않았지만 계피 추출물 투여군에서는 이들 세포자멸 표지자에 대한 반응세포는 유의하게 감소되었다(p < 0.05). 그러나, diclofenac과 계피 추출물 투여군은 5-bromo-2-deoxyuridine의 섭취에는 영향을 주지 않았다. 이러한 결과에서 계피추출물이 항염활성과 항세포 자멸 활성을 통해 관절연골에 보호 효과가 있음을 보였다.

The present study was conducted to evaluate the efficacy of Cinnamomum cassia Blume (CC) extract on the repair of damaged cartilage in a rat model of osteoarthritis (OA) by anterior cruciate ligament transection (ACLT) and medial meniscus resection (MMx). Forty-eight rats were assigned to six groups (n = 8 per group): sham as negative control (NC), positive control (PC), diclofenac sodium (DS, 2 mg/kg), CC 25 mg/kg, CC 50 mg/kg and CC 100 mg/kg groups. Treatments were 12 weeks from 7 days after ACLT + MMx. Loss of cartilage and joint instability were significantly reduced in response to treatment with CC or DS compared to the PC (p < 0.05). CC significantly ameliorated cartilage degradation in a dose-dependent manner as assessed by histological findings (p < 0.01). A reduction in the severity of structural changes and a dose-dependent increase in Safranin-O staining intensity were observed in CC treatments, indicating that cartilage degradation was inhibited. Although DS did not affect the increase in active caspase-3 and cleaved poly(ADP-ribose) polymerase-induced apoptosis during the progression of OA, cells reactive to these apoptotic markers were decreased significantly by CC (p < 0.05). However, treatments with CC or DS did not influence the uptake of 5-bromo-2'-deoxyuridine. The findings suggest that CC can exert a chondroprotective action on OA through anti-inflammatory and anti-apoptotic properties.

키워드

참고문헌

  1. Aigner T. Apoptosis, necrosis, or whatever: how to find out what really happens? J Pathol 2002; 198: 5-13. https://doi.org/10.1002/path.1169
  2. Armstrong S, Read R, Ghosh P. The effects of intraarticular hyaluronan on cartilage and subchondral bone changes in an ovine model of early osteoarthritis. J Rheumatol 1994; 21: 680-688.
  3. Boatright KM, Salvesen GS. Mechanisms of caspase activation. Curr Opin Cell Biol 2003; 15: 725-731. https://doi.org/10.1016/j.ceb.2003.10.009
  4. Boileau C, Martel-Pelletier J, Jouzeau JY, Netter P, Moldovan F, Laufer S, Tries S, Pelletier JP. Licofelone (ML-3000), a dual inhibitor of 5-lipoxygenase and cyclooxygenase, reduces the level of cartilage chondrocyte death in vivo in experimental dog osteoarthritis: inhibition of pro-apoptotic factors. J Rheumatol 2002; 29: 1446-1453.
  5. Chen J, Nagayama T, Jin K, Stetler RA, Zhu RL, Graham SH, Simon RP. Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J Neurosci 1998; 18: 4914-4928.
  6. Ding Y, Wu EQ, Liang C, Chen J, Tran MN, Hong CH, Jang Y, Park KL, Bae K, Kim YH, Kang JS. Discrimination of cinnamon bark and cinnamon twig samples sourced from various countries using HPLC-based fingerprint analysis. Food Chem 2011; 127: 755-760. https://doi.org/10.1016/j.foodchem.2011.01.011
  7. Galois L, Etienne S, Grossin L, Cournil C, Pinzano A, Netter P, Mainard D, Gillet P. Moderate-impact exercise is associated with decreased severity of experimental osteoarthritis in rats. Rheumatology (Oxford) 2003; 42: 692-693. https://doi.org/10.1093/rheumatology/keg094
  8. Grossin L, Cournil-Henrionnet C, Pinzano A, Gaborit N, Dumas D, Etienne S, Stoltz JF, Terlain B, Netter P, Mir LM, Gillet P. Gene transfer with HSP 70 in rat chondrocytes confers cytoprotection in vitro and during experimental osteoarthritis. FASEB J 2006; 20: 65-75. https://doi.org/10.1096/fj.04-2889com
  9. Guilak F, Ratcliffe A, Lane N, Rosenwasser MP, Mow VC. Mechanical and biochemical changes in the superficial zone of articular cartilage in canine experimental osteoarthritis. J Orthop Res 1994; 12: 474-484. https://doi.org/10.1002/jor.1100120404
  10. Hashimoto S, Takahashi K, Amiel D, Coutts RD, Lotz M. Chondrocyte apoptosis and nitric oxide production during experimentally induced osteoarthritis. Arthritis Rheum 1998; 41: 1266-1274. https://doi.org/10.1002/1529-0131(199807)41:7<1266::AID-ART18>3.0.CO;2-Y
  11. Hayami T, Pickarski M, Zhuo Y, Wesolowski GA, Rodan GA, le Duong T. Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone 2006; 38: 234-243. https://doi.org/10.1016/j.bone.2005.08.007
  12. Hoedt-Schmidt S, Scheid A, Kalbhen DA. Histomorphological and lectin histochemical confirmation of the antidegenerative effect of diclofenac in experimental osteoarthrosis. Arzneimittelforschung 1989; 39: 1212-1219.
  13. Hollander AP, Pidoux I, Reiner A, Rorabeck C, Bourne R, Poole AR. Damage to type II collagen in aging and osteoarthritis starts at the articular surface, originates around chondrocytes, and extends into the cartilage with progressive degeneration. J Clin Invest 1995; 96: 2859-2869. https://doi.org/10.1172/JCI118357
  14. Huss U, Ringbom T, Perera P, Bohlin L, Vasänge M. Screening of ubiquitous plant constituents for COX-2 inhibition with a scintillation proximity based assay. J Nat Prod 2002; 65: 1517-1521. https://doi.org/10.1021/np020023m
  15. Ito T, Mitui H, Udaka N, Hayashi H, Okudela K, Kanisawa M, Kitamura H. Ki-67 (MIB 5) immunostaining of mouse lung tumors induced by 4-nitroquinoline 1-oxide. Histochem Cell Biol 1998; 110: 589-593. https://doi.org/10.1007/s004180050321
  16. Kalbhen DA. Biochemically induced osteoarthritis in the chicken and rat. In: Munthe E, ed. Effects of drugs on osteoarthritis. Berne: Huber. 1980: 48-68.
  17. Kubo M, Ma S, Wu J, Matsuda H. Anti-inflammatory activities of 70% methanolic extract from Cinnamomi Cortex. Biol Pharm Bull 1996; 19: 1041-1045. https://doi.org/10.1248/bpb.19.1041
  18. Kuettner KE. Biochemistry of articular cartilage in health and disease. Clin Biochem 1992; 25: 155-163. https://doi.org/10.1016/0009-9120(92)90224-G
  19. Kurokawa M, Kumeda CA, Yamamura J, Kamiyama T, Shiraki K. Antipyretic activity of cinnamyl derivatives and related compounds in influenza virus-infected mice. Eur J Pharmacol 1998; 348: 45-51. https://doi.org/10.1016/S0014-2999(98)00121-6
  20. Le Rhun Y, Kirkland JB, Shah GM. Cellular responses to DNA damage in the absence of Poly(ADP-ribose) polymerase. Biochem Biophys Res Commun 1998; 245: 1-10. https://doi.org/10.1006/bbrc.1998.8257
  21. Lee HS, Kim BS, Kim MK. Suppression effect of Cinnamomum cassia bark-derived component on nitric oxide synthase. J Agric Food Chem 2002; 50: 7700-7703. https://doi.org/10.1021/jf020751f
  22. Lovász G, Park SH, Ebramzadeh E, Benya PD, Llinás A, Bellyei A, Luck JV Jr, Sarmiento A. Characteristics of degeneration in an unstable knee with a coronal surface stepoff. J Bone Joint Surg Br 2001; 83: 428-436. https://doi.org/10.1302/0301-620X.83B3.9674
  23. Malemud CJ, Islam N, Haqqi TM. Pathophysiological mechanisms in osteoarthritis lead to novel therapeutic strategies. Cells Tissues Organs 2003; 174: 34-48. https://doi.org/10.1159/000070573
  24. Matsuda H, Matsuda R, Fukuda S, Shiomoto H, Kubo M. Anti-thrombic actions of 70% methanolic extract and cinnamic aldehyde from cinnamomi cortex. Chem Pharm Bull (Tokyo) 1987; 35: 1275-1280. https://doi.org/10.1248/cpb.35.1275
  25. Moore EE, Bendele AM, Thompson DL, Littau A, Waggie KS, Reardon B, Ellsworth JL. Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis. Osteoarthritis Cartilage 2005; 13: 623-631. https://doi.org/10.1016/j.joca.2005.03.003
  26. Owens S, Wagner P, Vangsness CT Jr. Recent advances in glucosamine and chondroitin supplementation. J Knee Surg 2004; 17: 185-193.
  27. Pavelká K, Gatterová J, lejarová M, Machacek S, Giacovelli G, Rovati LC. 2002. Glucosamine sulfate use and delay of progression of knee osteoarthritis: a 3-year, randomized, placebo-controlled, double-blind study. Arch Intern Med 2002; 162: 2113-2123. https://doi.org/10.1001/archinte.162.18.2113
  28. Rashad S, Revell P, Hemingway A, Low F, Rainsford K, Walker F. Effect of non-steroidal anti-inflammatory drugs on the course of osteoarthritis. Lancet 1989; 2: 519-522.
  29. Rezende MU, Gurgel HM, Vilaca Junior PR, Kuroba RK, Lopes AS, Phillipi RZ, Hernandez AJ. Diacerhein versus glucosamine in a rat model of osteoarthritis. Clinics 2006; 61: 461-466.
  30. Setton LA, Elliott DM, Mow VC. Altered mechanics of cartilage with osteoarthritis: human osteoarthritis and an experimental model of joint degeneration. Osteoarthritis Cartilage 1999; 7: 2-14. https://doi.org/10.1053/joca.1998.0170
  31. Stoop R, Buma P, van der Kraan PM, Hollander AP, Billinghurst RC, Meijers TH, Poole AR, van den Berg WB. Type II collagen degradation in articular cartilage fibrillation after anterior cruciate ligament transection in rats. Oteoarthritis Cartilage 2001; 9: 308-315. https://doi.org/10.1053/joca.2000.0390
  32. Watrin-Pinzano A, Etienne S, Grossin L, Gaborit N, Cournil- Henrionnet C, Mainard D, Netter P, Gillet P, Galois L. Increased apoptosis in rat osteoarthritic cartilage corresponds to degenerative chondral lesions and concomitant expression of caspase-3. Biorheology 2006; 43: 403-412.
  33. Zhu YP, Chinese materia medica: chemistry, pharmacology and applications. Amsterdam, Harwood Academic Publishers; 1998: 353-356.