References
- Kim JH, Kim KK. A study on the adherence of Streptococcus mutans to glucans formed in situ in salivary pellicle. International Journal of Oral Biology. 1990;14(2): 143-9.
- Rozen R, Bachrach G, Zachs B, Steinberg D. Growth rate and biofilm thickness of Streptococcus sobrinus and Streptococcus mutans on hydroxapatite. Apmis. 2001;109(2): 155-60. https://doi.org/10.1034/j.1600-0463.2001.d01-117.x
- Denepitiya L, Kleinberg I. A comparison of the acid-base and aciduric properties of various serotypes of the bacterium Streptococcus mutans associated with dental plaque. Archives of oral biology. 1984;29(5):385-93. https://doi.org/10.1016/0003-9969(84)90165-1
- Haffajee AD, Socransky SS. Microbiology of periodontal diseases: introduction. Periodontology 2000. 2005;38:9-12. https://doi.org/10.1111/j.1600-0757.2005.00112.x
- Socransky SS, Haffajee AD. Periodontal microbial ecology. Periodontology 2000. 2005;38:135-87. https://doi.org/10.1111/j.1600-0757.2005.00107.x
- Watson MR, Bretz WA, Loesche WJ. Presence of Treponema denticola and Porphyromonas gingivalis in children correlated with periodontal disease of their parents. Journal of dental research. 1994;73(10):1636-40. https://doi.org/10.1177/00220345940730100801
- Holt SC, Ebersole JL. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the "red complex", a prototype polybacterial pathogenic consortium in periodontitis. Periodontol 2000. 2005;38:72-122. https://doi.org/10.1111/j.1600-0757.2005.00113.x
- Dzink JL, Tanner AC, Haffajee AD, Socransky SS. Gram negative species associated with active destructive periodontal lesions. J Clin Periodontol. 1985;12(8):648-59. https://doi.org/10.1111/j.1600-051X.1985.tb00936.x
- Budu CE, Luengpailin J, Reyes G, Doyle RJ, Cowan MM. Virulence factors of Porphyromonas gingivalis are modified by polyphenol oxidase and asparaginase. Oral Microbiol Immunol. 2003;18(5):313-7. https://doi.org/10.1034/j.1399-302X.2003.00092.x
- Levesque C, Lamothe J, Frenette M. Coaggregation of Streptococcus salivarius with periodontopathogens: evidence for involvement of fimbriae in the interaction with Prevotella intermedia. Oral Microbiol Immunol. 2003; 18(5):333-7. https://doi.org/10.1034/j.1399-302X.2003.00085.x
- Lee YH, Jeong SY, Na HS, Jeoung SH, Park HR, Chung J. Comparison of Cytokine Gene Induction in RAW 264.7 Cells by Porphyromonas gingivalis and Escherichia coli Lipopolysaccharide. International Journal of Oral Biology. 2010;35(3):121-8.
- McGraw WT, Potempa J, Farley D, Travis J. Purification, characterization, and sequence analysis of a potential virulence factor from Porphyromonas gingivalis, peptidylarginine deiminase. Infect Immun. 1999;67(7):3248-56.
- Masada MP, Persson R, Kenney JS, Lee SW, Page RC, Allison AC. Measurement of interleukin-1 alpha and -1 beta in gingival crevicular fluid: implications for the pathogenesis of periodontal disease. J Periodontal Res. 1990; 25(3):156-63. https://doi.org/10.1111/j.1600-0765.1990.tb01038.x
- Diya Z, Lili C, Shenglai L, Zhiyuan G, Jie Y. Lipopolysaccharide (LPS) of Porphyromonas gingivalis induces IL-1beta, TNF-alpha and IL-6 production by THP-1 cells in a way different from that of Escherichia coli LPS. Innate Immun. 2008;14(2):99-107. https://doi.org/10.1177/1753425907088244
- Beighton D, Radford JR, Naylor MN. Glycosidase activities in gingival crevicular fluid in subjects with adult periodontitis or gingivitis. Arch Oral Biol. 1992;37(5):343-8. https://doi.org/10.1016/0003-9969(92)90016-2
- Arakawa S, Nakajima T, Ishikura H, Ichinose S, Ishikawa I, Tsuchida N. Novel apoptosis-inducing activity in Bacteroides forsythus: a comparative study with three serotypes of Actinobacillus actinomycetemcomitans. Infect Immun. 2000;68(8):4611-5. https://doi.org/10.1128/IAI.68.8.4611-4615.2000
- Myneni SR, Settem RP, Connell TD, Keegan AD, Gaffen SL, Sharma A. TLR2 signaling and Th2 responses drive Tannerella forsythia-induced periodontal bone loss. J Immunol. 2011;187(1):501-9. https://doi.org/10.4049/jimmunol.1100683
- You SQ. [Study on feasibility of Chinese green tea polyphenols (CTP) for preventing dental caries]. Zhonghua Kou Qiang Yi Xue Za Zhi. 1993;28(4):197-9, 254.
- Matsumoto M, Minami T, Sasaki H, Sobue S, Hamada S, Ooshima T. Inhibitory effects of oolong tea extract on caries- inducing properties of mutans streptococci. Caries Res. 1999;33(6):441-5. https://doi.org/10.1159/000016549
- Anila Namboodiripad P, Kori S. Can coffee prevent caries? J Conserv Dent. 2009;12(1):17-21. https://doi.org/10.4103/0972-0707.53336
- Hosokawa Y, Hosokawa I, Ozaki K, Nakanishi T, Nakae H, Matsuo T. Tea polyphenols inhibit IL-6 production in tumor necrosis factor superfamily 14-stimulated human gingival fibroblasts. Mol Nutr Food Res;54 Suppl 2:S151-8.
- Horiba N, Hiratsuka K, Onoe T, Yoshida T, Suzuki K, Matsumoto T, et al. Bactericidal effect of electrolyzed neutral water on bacteria isolated from infected root canals. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999; 87(1):83-7. https://doi.org/10.1016/S1079-2104(99)70300-8
- Lee SH, Choi BK. Antibacterial effect of electrolyzed water on oral bacteria. J Microbiol. 2006;44(4):417-22.
- Lee SH, Jun HK, Lee HR, Chung CP, Choi BK. Antibacterial and lipopolysaccharide (LPS)-neutralising activity of human cationic antimicrobial peptides against periodontopathogens. Int J Antimicrob Agents. 2009;35(2):138-45.
- Barnett ML. The role of therapeutic antimicrobial mouthrinses in clinical practice: control of supragingival plaque and gingivitis. J Am Dent Assoc. 2003;134(6):699-704. https://doi.org/10.14219/jada.archive.2003.0255
- Nishihara T, Koseki T. Microbial etiology of periodontitis. Periodontol 2000. 2004;36:14-26. https://doi.org/10.1111/j.1600-0757.2004.03671.x
- Marsh PD. Dental plaque as a biofilm and a microbial community - implications for health and disease. BMC Oral Health. 2006;6 Suppl 1:S14. https://doi.org/10.1186/1472-6831-6-S1-S14
- Kononen E. Development of oral bacterial flora in young children. Ann Med. 2000;32(2):107-12. https://doi.org/10.3109/07853890009011759
- Tanaka H, Hirakata Y, Kaku M, Yoshida R, Takemura H, Mizukane R, et al. Antimicrobial activity of superoxidized water. J Hosp Infect. 1996;34(1):43-9. https://doi.org/10.1016/S0195-6701(96)90124-3
- Miyamoto M, Inoue K, Gu Y, Hoki M, Haji S, Ohyanagi H. Effectiveness of acidic oxidative potential water in preventing bacterial infection in islet transplantation. Cell Transplant. 1999;8(4):405-11. https://doi.org/10.1177/096368979900800410
- Park H, Hung YC, Brackett RE. Antimicrobial effect of electrolyzed water for inactivating Campylobacter jejuni during poultry washing. Int J Food Microbiol. 2002;72(1-2): 77-83. https://doi.org/10.1016/S0168-1605(01)00622-5
- Nakagawara S, Goto T, Nara M, Ozawa Y, Hotta K, Arata Y. Spectroscopic Characterization and the pH Dependence of. Bactericidal Activity of the Aqueous Chlorine Solution. Spectroscopic Characterization and the pH Dependence of Bactericidal Activity 1998;14:691-8. https://doi.org/10.2116/analsci.14.691
- Zeng X, Tang W, Ye G, Ouyang T, Tian L, Ni Y, et al. Studies on disinfection mechanism of electrolyzed oxidizing water on E. coli and Staphylococcus aureus. J Food Sci. 2010;75(5):M253-60. https://doi.org/10.1111/j.1750-3841.2010.01649.x
- Nakajima N, Nakano T, Harada F, Taniguchi H, Yokoyama I, Hirose J, et al. Evaluation of disinfective potential of reactivated free chlorine in pooled tap water by electrolysis. J Microbiol Methods. 2004;57(2):163-73. https://doi.org/10.1016/j.mimet.2003.12.011