DOI QR코드

DOI QR Code

Antibacterial Activity of Hydrogen-rich Water Against Oral Bacteria

  • Lee, Sung-Hoon (Department of Oral Microbiology and Immunology, College of Dentistry, Dankook University) ;
  • Baek, Dong-Heon (Department of Oral Microbiology and Immunology, College of Dentistry, Dankook University)
  • Received : 2013.04.11
  • Accepted : 2013.05.20
  • Published : 2013.06.30

Abstract

There are estimated to be about 700 species of bacteria in the oral cavity. Based on epidemiological investigations, some of these strains have been proposed as the pathogens responsible for oral diseases such as dental caries, gingivitis and periodontitis. Since electrolyzed hydrogen-rich water has been shown to have beneficial effects on human immunity, its use has increased. In our study, the antibacterial activity of hydrogen-rich water for oralagainst bacteria associated with oral disease was evaluated. The bacterial strains Streptococcus mutans, Fusobacterium nucleatum, Porphyromonas gingivalis and Tannerella forsythia were cultured in specific growth medium. S. mutans, F. nucleatum and P. gingivalis were soaked to thein both hydrogen water and tap water for 30 sec and then inoculated onto mitis-salivarius agar and brain heart infusion agar including supplemented withvitamin K and hemin, respectively. The numbers of bacterial colonies were then measured after cultivation for 48 hours. In the case of T. forsythia, which does not grow well on agar plates, inoculations into modified new oral spirochete (NOS) broth were performed and growth curve analysis was undertaken every day with a spectrophotometer. Hydrogen water showed antibacterial activity against all four bacterial strains in comparison with tap-water. We conclude from this that hydrogen water may have a positive impact on oral hygiene by helping to remove cariogenic bacteria and periodontopathogens.

Keywords

References

  1. Kim JH, Kim KK. A study on the adherence of Streptococcus mutans to glucans formed in situ in salivary pellicle. International Journal of Oral Biology. 1990;14(2): 143-9.
  2. Rozen R, Bachrach G, Zachs B, Steinberg D. Growth rate and biofilm thickness of Streptococcus sobrinus and Streptococcus mutans on hydroxapatite. Apmis. 2001;109(2): 155-60. https://doi.org/10.1034/j.1600-0463.2001.d01-117.x
  3. Denepitiya L, Kleinberg I. A comparison of the acid-base and aciduric properties of various serotypes of the bacterium Streptococcus mutans associated with dental plaque. Archives of oral biology. 1984;29(5):385-93. https://doi.org/10.1016/0003-9969(84)90165-1
  4. Haffajee AD, Socransky SS. Microbiology of periodontal diseases: introduction. Periodontology 2000. 2005;38:9-12. https://doi.org/10.1111/j.1600-0757.2005.00112.x
  5. Socransky SS, Haffajee AD. Periodontal microbial ecology. Periodontology 2000. 2005;38:135-87. https://doi.org/10.1111/j.1600-0757.2005.00107.x
  6. Watson MR, Bretz WA, Loesche WJ. Presence of Treponema denticola and Porphyromonas gingivalis in children correlated with periodontal disease of their parents. Journal of dental research. 1994;73(10):1636-40. https://doi.org/10.1177/00220345940730100801
  7. Holt SC, Ebersole JL. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the "red complex", a prototype polybacterial pathogenic consortium in periodontitis. Periodontol 2000. 2005;38:72-122. https://doi.org/10.1111/j.1600-0757.2005.00113.x
  8. Dzink JL, Tanner AC, Haffajee AD, Socransky SS. Gram negative species associated with active destructive periodontal lesions. J Clin Periodontol. 1985;12(8):648-59. https://doi.org/10.1111/j.1600-051X.1985.tb00936.x
  9. Budu CE, Luengpailin J, Reyes G, Doyle RJ, Cowan MM. Virulence factors of Porphyromonas gingivalis are modified by polyphenol oxidase and asparaginase. Oral Microbiol Immunol. 2003;18(5):313-7. https://doi.org/10.1034/j.1399-302X.2003.00092.x
  10. Levesque C, Lamothe J, Frenette M. Coaggregation of Streptococcus salivarius with periodontopathogens: evidence for involvement of fimbriae in the interaction with Prevotella intermedia. Oral Microbiol Immunol. 2003; 18(5):333-7. https://doi.org/10.1034/j.1399-302X.2003.00085.x
  11. Lee YH, Jeong SY, Na HS, Jeoung SH, Park HR, Chung J. Comparison of Cytokine Gene Induction in RAW 264.7 Cells by Porphyromonas gingivalis and Escherichia coli Lipopolysaccharide. International Journal of Oral Biology. 2010;35(3):121-8.
  12. McGraw WT, Potempa J, Farley D, Travis J. Purification, characterization, and sequence analysis of a potential virulence factor from Porphyromonas gingivalis, peptidylarginine deiminase. Infect Immun. 1999;67(7):3248-56.
  13. Masada MP, Persson R, Kenney JS, Lee SW, Page RC, Allison AC. Measurement of interleukin-1 alpha and -1 beta in gingival crevicular fluid: implications for the pathogenesis of periodontal disease. J Periodontal Res. 1990; 25(3):156-63. https://doi.org/10.1111/j.1600-0765.1990.tb01038.x
  14. Diya Z, Lili C, Shenglai L, Zhiyuan G, Jie Y. Lipopolysaccharide (LPS) of Porphyromonas gingivalis induces IL-1beta, TNF-alpha and IL-6 production by THP-1 cells in a way different from that of Escherichia coli LPS. Innate Immun. 2008;14(2):99-107. https://doi.org/10.1177/1753425907088244
  15. Beighton D, Radford JR, Naylor MN. Glycosidase activities in gingival crevicular fluid in subjects with adult periodontitis or gingivitis. Arch Oral Biol. 1992;37(5):343-8. https://doi.org/10.1016/0003-9969(92)90016-2
  16. Arakawa S, Nakajima T, Ishikura H, Ichinose S, Ishikawa I, Tsuchida N. Novel apoptosis-inducing activity in Bacteroides forsythus: a comparative study with three serotypes of Actinobacillus actinomycetemcomitans. Infect Immun. 2000;68(8):4611-5. https://doi.org/10.1128/IAI.68.8.4611-4615.2000
  17. Myneni SR, Settem RP, Connell TD, Keegan AD, Gaffen SL, Sharma A. TLR2 signaling and Th2 responses drive Tannerella forsythia-induced periodontal bone loss. J Immunol. 2011;187(1):501-9. https://doi.org/10.4049/jimmunol.1100683
  18. You SQ. [Study on feasibility of Chinese green tea polyphenols (CTP) for preventing dental caries]. Zhonghua Kou Qiang Yi Xue Za Zhi. 1993;28(4):197-9, 254.
  19. Matsumoto M, Minami T, Sasaki H, Sobue S, Hamada S, Ooshima T. Inhibitory effects of oolong tea extract on caries- inducing properties of mutans streptococci. Caries Res. 1999;33(6):441-5. https://doi.org/10.1159/000016549
  20. Anila Namboodiripad P, Kori S. Can coffee prevent caries? J Conserv Dent. 2009;12(1):17-21. https://doi.org/10.4103/0972-0707.53336
  21. Hosokawa Y, Hosokawa I, Ozaki K, Nakanishi T, Nakae H, Matsuo T. Tea polyphenols inhibit IL-6 production in tumor necrosis factor superfamily 14-stimulated human gingival fibroblasts. Mol Nutr Food Res;54 Suppl 2:S151-8.
  22. Horiba N, Hiratsuka K, Onoe T, Yoshida T, Suzuki K, Matsumoto T, et al. Bactericidal effect of electrolyzed neutral water on bacteria isolated from infected root canals. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999; 87(1):83-7. https://doi.org/10.1016/S1079-2104(99)70300-8
  23. Lee SH, Choi BK. Antibacterial effect of electrolyzed water on oral bacteria. J Microbiol. 2006;44(4):417-22.
  24. Lee SH, Jun HK, Lee HR, Chung CP, Choi BK. Antibacterial and lipopolysaccharide (LPS)-neutralising activity of human cationic antimicrobial peptides against periodontopathogens. Int J Antimicrob Agents. 2009;35(2):138-45.
  25. Barnett ML. The role of therapeutic antimicrobial mouthrinses in clinical practice: control of supragingival plaque and gingivitis. J Am Dent Assoc. 2003;134(6):699-704. https://doi.org/10.14219/jada.archive.2003.0255
  26. Nishihara T, Koseki T. Microbial etiology of periodontitis. Periodontol 2000. 2004;36:14-26. https://doi.org/10.1111/j.1600-0757.2004.03671.x
  27. Marsh PD. Dental plaque as a biofilm and a microbial community - implications for health and disease. BMC Oral Health. 2006;6 Suppl 1:S14. https://doi.org/10.1186/1472-6831-6-S1-S14
  28. Kononen E. Development of oral bacterial flora in young children. Ann Med. 2000;32(2):107-12. https://doi.org/10.3109/07853890009011759
  29. Tanaka H, Hirakata Y, Kaku M, Yoshida R, Takemura H, Mizukane R, et al. Antimicrobial activity of superoxidized water. J Hosp Infect. 1996;34(1):43-9. https://doi.org/10.1016/S0195-6701(96)90124-3
  30. Miyamoto M, Inoue K, Gu Y, Hoki M, Haji S, Ohyanagi H. Effectiveness of acidic oxidative potential water in preventing bacterial infection in islet transplantation. Cell Transplant. 1999;8(4):405-11. https://doi.org/10.1177/096368979900800410
  31. Park H, Hung YC, Brackett RE. Antimicrobial effect of electrolyzed water for inactivating Campylobacter jejuni during poultry washing. Int J Food Microbiol. 2002;72(1-2): 77-83. https://doi.org/10.1016/S0168-1605(01)00622-5
  32. Nakagawara S, Goto T, Nara M, Ozawa Y, Hotta K, Arata Y. Spectroscopic Characterization and the pH Dependence of. Bactericidal Activity of the Aqueous Chlorine Solution. Spectroscopic Characterization and the pH Dependence of Bactericidal Activity 1998;14:691-8. https://doi.org/10.2116/analsci.14.691
  33. Zeng X, Tang W, Ye G, Ouyang T, Tian L, Ni Y, et al. Studies on disinfection mechanism of electrolyzed oxidizing water on E. coli and Staphylococcus aureus. J Food Sci. 2010;75(5):M253-60. https://doi.org/10.1111/j.1750-3841.2010.01649.x
  34. Nakajima N, Nakano T, Harada F, Taniguchi H, Yokoyama I, Hirose J, et al. Evaluation of disinfective potential of reactivated free chlorine in pooled tap water by electrolysis. J Microbiol Methods. 2004;57(2):163-73. https://doi.org/10.1016/j.mimet.2003.12.011