DOI QR코드

DOI QR Code

나노크기 매킨나와이트로 코팅된 알루미나에 의한 아비산염의 제거

Removal of Arsenite by Nanocrystalline Mackinawite(FeS)-Coated Alumina

  • 이승열 (부산대학교 지질환경과학과) ;
  • 강정천 (부산대학교 지질환경과학과) ;
  • 박민지 (부산대학교 지질환경과학과) ;
  • 양경희 (부산대학교 지질환경과학과) ;
  • 정훈영 (부산대학교 지질환경과학과)
  • Lee, Seungyeol (Department of Geological Sciences, Pusan National University) ;
  • Kang, Jung Chun (Department of Geological Sciences, Pusan National University) ;
  • Park, Minji (Department of Geological Sciences, Pusan National University) ;
  • Yang, Kyounghee (Department of Geological Sciences, Pusan National University) ;
  • Jeong, Hoon Young (Department of Geological Sciences, Pusan National University)
  • 투고 : 2013.06.03
  • 심사 : 2013.06.19
  • 발행 : 2013.06.30

초록

나노크기 매킨나와이트(nanocrystalline mackinawite, FeS)는 높은 비표면적을 지닌 반응성 높은 광물로, 오염된 지하수나 토양의 복원을 위해 널리 사용된다. 또한 매킨나와이트는 혐기성 부식반응에 대해 열역학적으로 안정하고, 황산염 환원미생물의 대사에 의해 재생된다는 장점이 있다. 하지만 매킨나와이트 나노입자는 지하수 흐름에 의해 멀리 확산되거나 입자집적이 일어나 대수층 공극을 막는다. 따라서 현장복원을 위한 투과반응벽(permeable reactive barrier)의 설치를 위해서 나노크기 매킨나와이트에 대한 변형이 필요하다. 이를 위해 본 연구에서는 코팅법을 활용해 매킨나와이트 나노입자를 알루미나(alumina, $Al_2O_3$) 및 활성알루미나(activated alumina) 표면에 증착시켰다. 매킨나와이트의 코팅량은 pH에 따라 현저히 달랐으며, 두 종의 알루미나 모두 약 pH 6.9에서 최대 코팅이 관찰되었다. 이 pH에서 알루미나와 매킨나와이트는 반대의 표면전하(surface charge)를 띠어 두 광물 간 정전기적 인력이 발생하고, 이로 인해 효율적인 코팅이 일어났다. 이 pH에서 알루미나 및 활성 알루미나에 의한 코팅량은 각각 0.038 $mmol{\cdot}FeS/g$과 0.114 $mmol{\cdot}FeS/g$이었다. 혐기성 조건에서 코팅되지 않은 알루미나 및 활성 알루미나, 그리고 최적 pH에서 코팅된 알루미나 및 활성 알루미나를 사용해 아비산염(arsenite) 흡착실험을 수행했다. 코팅되지 않은 활성 알루미나는 코팅되지 않은 알루미나와 비교해 단위질량당 높은 아비산염의 제거를 보여주었으나, 매킨나와이트의 코팅에 의한 흡착량 증가를 보이지 않았다. 활성 알루미나는 높은 비표면적을 지니고 있어 반응성 높은 수산화작용기(hydroxyl functional group)가 다수 존재했고, 이로 인해 코팅된 매킨나와이트에 의한 아비산염의 제거가 중요하지 않았다. 반면 알루미나는 매킨나와이트 코팅에 의해 향상된 아비산염의 제거율을 보였는데, 이것은 알루미나에 존재한 수산화작용기가 아비산염과의 표면배위결합(surface complexation)에 소모되고, 코팅된 매킨나와이트에 의한 부가적인 흡착이 일어났기 때문이다. 코팅된 알루미나는 이전에 연구된 코팅된 실리카와 비교해보면 단위 비표면적당 매킨나와이트의 코팅량이 약 8배 높았으며, 더 높은 아비산염에 대한 흡착력을 보였다. 따라서 본 연구의 결과는 코팅된 알루미나는 투과반응벽의 설치에 적합한 물질이고, 특히 아비산염으로 오염된 지하수의 정화에 유용하게 적용될 수 있음을 지시하고 있다.

Due to the large specific surface area and great reactivity toward environmental contaminants, nanocrystalline mackinawite (FeS) has been widely applied for the remediation of contaminated groundwater and soil. Furthermore, nanocrystalline FeS is rather thermodynamically stable against anoxic corrosion, and its reactivity can be regenerated continuously by the activity of sulfate-reducing bacteria. However, nanocrystalline mackinawite is prone to either spread out along the groundwater flow or cause pore clogging in aquifers by particle aggregation. Accordingly, this mineral should be modified for the application of permeable reactive barriers (PRBs). In this study, coating methods were investigated by which mackinawite nanoparticles were deposited on the surface of alumina or activated alumina. The amount of FeS coating was found to significantly vary with pH, with the highest amount occurring at pH ~6.9 for both minerals. At this pH, the surfaces of mackinawite and alumina (or activated alumina) were oppositely charged, with the resultant electrostatic attraction making the coating highly effective. At this pH, the coating amounts by alumina and activated alumina were 0.038 and 0.114 $mmol{\cdot}FeS/g$, respectively. Under anoxic conditions, arsenite sorption experiments were conducted with uncoated alumina, uncoated activated alumina, and both minerals coated with FeS at the optimal pH for comparison of their reactivity. Uncoated activated alumina showed the higher arsenite removal compared to uncoated alumina. Notably, the arsenite sorption capacity of activated alumina was little changed by the coating with FeS. This might be attributed to the abundance of highly reactive hydroxyl functional groups (${\equiv}$AlOH) on the surface of activated alumina, making the arsenite sorption by the coated FeS unnoticeable. In contrast, the arsenite sorption capacity of alumina was found to increase substantially by the FeS coating. This was due to the consumption of the surface hydroxyl functional groups on the alumina surface and the subsequent occurrence of As(III) sorption by the coated FeS. Alumina, on the surface area basis, has about 8 times higher FeS coating amount and higher As(III) sorption capacity than silica. This study indicates that alumina is a better candidate than silica for the coating of nanocrystalline mackinawite.

키워드

참고문헌

  1. Bebie, J., Schoonen, M.A., Fuhrmann, M., and Strongin, D.R. (1998) Surface charge development on transition metal sulfides: an electrokinetic study. Geochimica et Cosmochimica Acta, 62, 633-642. https://doi.org/10.1016/S0016-7037(98)00058-1
  2. Berner, R.A. (1967) Thermodynamic stability of sedimentary iron, sulfides. American Journal of Science, 9, 773-785.
  3. Butler, E.C. and Hayes, K.F. (1998) Effects of solution composition and pH on the reductive dechlorination of hexachloroethane by iron sulfide. Environmental Science & Technology, 32, 1276-1284. https://doi.org/10.1021/es9706864
  4. Butler, E.C. and Hayes, K.F. (2001) Factors influencing rates and products in the transformation of trichloroethylene by iron sulfide and iron metal. Environmental Science & Technology, 35, 3884-3891. https://doi.org/10.1021/es010620f
  5. Coston, J.A., Fuller, C.C., and Davis, J.A. (1995) $Pb^{2+}$ and $Zn^{2+}$ adsorption by a natural aluminum-bearing and iron-bearing surface coating on an aquifer sand. Geochimica et Cosmochimica Acta, 59, 3535-3547. https://doi.org/10.1016/0016-7037(95)00231-N
  6. Gallegos, T.J. (2007) Sequestration of As(III) by synthetic mackinawite under anoxic conditions. Ph.D. Thesis, The University of Michigan, Ann Arbor, MI. 40p.
  7. Ghorai, S. and Pant, K.K. (2005) Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina. Separation and Purification Technology, 42, 265-271. https://doi.org/10.1016/j.seppur.2004.09.001
  8. Han, Y.-S., Gallegos, T.J., Demond, A.H., and Hayes, K.F. (2011a) FeS-coated sand for removal of arsenic(III) under anaerobic conditions in permeable reactive barriers. Water Research, 45, 593-604. https://doi.org/10.1016/j.watres.2010.09.033
  9. Han, Y.-S., Jeong, H.Y., Demond, A.H., and Hayes, K.F. (2011b) X-ray absorption and photoelectron spectroscopic study of the association of As(III) with nanoparticulate FeS and FeS-coated sand. Water Research, 45, 5727-5735. https://doi.org/10.1016/j.watres.2011.08.026
  10. Henderson, A.D. and Demond, A.H. (2007) Long-term performance of zero-valent iron permeable reactive barriers: a critical review. Environmental Engineering Science, 24, 410-423.
  11. Jeong, H.Y. and Hayes, K.F. (2007) Reductive dechlorination of tetrachloroethylene and trichloroethylene by mackinawite (FeS) in the presence of metals: reaction rates. Environmental Science & Technology, 41, 6390-6396. https://doi.org/10.1021/es0706394
  12. Jeong, H.Y., Lee, J.H., and Hayes, K.F. (2008) Characterization of synthetic nanocrystalline mackinawite: crystal structure, particle size, and specific surface area. Geochimica et Cosmochimica Acta, 72, 493-505. https://doi.org/10.1016/j.gca.2007.11.008
  13. Jeong, H.Y,. Han, Y.-S., and Hayes, K.F. (2012) X-ray absorption and X-ray photoelectron spectroscopic study of arsenic mobilization during mackinawite (FeS) oxidation, Environmental Science & Technology, 44, 955-961.
  14. Lee, S.Y., Kang, J.C., Park, M.J., Yang, K.H., and Jeong, H.Y. (2012) Sorption of arsenite using nano-sized mackinawite (FeS)-coated silica sand. Journal of the Mineralogical Society of Korea, 25, 185-195. (in Korean with English abstract). https://doi.org/10.9727/jmsk.2012.25.4.185
  15. Manning, B.A., Hunt, M.L., Amrhein, C., and Yarmoff, J.A. (2002) Arsenic (III) and arsenic (V) reactions with zerovalent iron corrosion products. Environmental Science & Technology, 36, 5455-5461. https://doi.org/10.1021/es0206846
  16. McBride, M.B. (1994) Environmental Chemistry of Soils. Oxford University Press, New York. 125p.
  17. Mullet, M., Boursiquot, S., and Ehrhardt, J.J. (2004) Removal of hexavalent chromium from solutions by mackinawite, tetragonal FeS. Colloids and Surfaces A, 244, 77-85. https://doi.org/10.1016/j.colsurfa.2004.06.013
  18. Patterson, R.R., Fendorf, S., and Fendorf, M. (1997) Reduction of hexavalent chromium by amorphous iron sulfide. Environmental Science & Technology, 31, 2039-2044. https://doi.org/10.1021/es960836v
  19. Rickard, D. (1995) Kinetics of FeS precipitation. part I. competing reaction mechanisms. Geochimica et Cosmochimica Acta, 59, 4367-4379. https://doi.org/10.1016/0016-7037(95)00251-T
  20. Scheidegger, A., Borkovec, M., and Sticher, H. (1993) Coating of silica sand with goethite: preparation and analytical identification. Geoderma, 58, 43-65. https://doi.org/10.1016/0016-7061(93)90084-X
  21. Viollier, E., Inglett, P.W., Hunter, K., Roychoudhury, A.N., and Van Cappellen, P. (2000) The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Applied Geochemistry, 15, 785-790. https://doi.org/10.1016/S0883-2927(99)00097-9
  22. Wolthers, M., Charlet, L., Meijden, C.H., Linde, P.R., and Rickard, D. (2005) Arsenic mobility in the ambient sulfidic environment: sorption of arsenic (V) and arsenic (III) onto disordered mackinawite. Geochimica et Cosmochimica Acta, 69, 3483-3492. https://doi.org/10.1016/j.gca.2005.03.003
  23. Xu, Y. and Axe, L. (2005) Synthesis and characterization of iron oxide coated silica and its effect on metal adsorption. Journal of Colloid and Interface Science, 282, 11-19. https://doi.org/10.1016/j.jcis.2004.08.057