DOI QR코드

DOI QR Code

Prediction of Effective Thermal Conductivity of Composites with Coated Short Fibers of Different Aspect Ratios Using Hybrid Model

하이브리드모델을 이용한 장단비가 다른 코팅된 단섬유를 갖는 복합재의 등가열전도계수 예측

  • Lee, Jae-Kon (School of Mechanical and Automotive Engineering, Catholic University of Daegu) ;
  • Kim, Jin-Gon (School of Mechanical and Automotive Engineering, Catholic University of Daegu)
  • 이재곤 (대구가톨릭대학교 기계자동차공학부) ;
  • 김진곤 (대구가톨릭대학교 기계자동차공학부)
  • Received : 2013.03.27
  • Accepted : 2013.06.07
  • Published : 2013.06.30

Abstract

A hybrid model is proposed to easily predict the effective thermal conductivity of composites with aligned- and coated-short fibers, whose aspect ratio is not constant. The thermal conductivities of coated fillers are computed by using the generalized self-consistent model, resulting in that composites are simply simulated by the matrix with the equivalent short fibers. Finally, the thermal conductivity of the composites is predicted using the modified Eshelby model. The predicted results by the representative models and hybrid model are compared for the composite with aligned- and coated-short fibers of single aspect ratio. It is demonstrated that the hybrid model can be applied to the composite with aligned- and short-fibers of aspect ratios, 2 and 10, without any difficulties.

일정하지 않은 장단비의 코팅된 충전재가 한 방향으로 정렬된 복합재의 등가열전도계수를 쉽게 예측할 수 있는 하이브리드모델을 제시한다. 코팅된 충전재의 등가열전도계수를 일반화된 자기일치모델로 계산하고, 원래 복합재를 모재와 이 값을 갖는 단섬유로 단순화한 후 수정된 에쉘비 모델을 적용한다. 일정한 장단비의 코팅된 단섬유가 한 방향으로 정렬된 복합재에 대해 일반화된 자기일치모델과 수정된 에쉘비모델의 예측결과를 하이브리드모델과 비교한다. 마지막으로 장단비 2와 10인 코팅된 단섬유가 한 방향으로 배치된 복합재의 등가열전도계수를 하이브리드모델로 쉽게 계산할 수 있음을 보여준다.

Keywords

References

  1. R.M. Christensen, "Two theoretical elasticity micromechanics", J. Elasticity, 50, pp. 15-25, 1998. DOI: http://dx.doi.org/10.1023/A:1007497600857
  2. J.D. Felske, "Effective thermal conductivity of composite spheres in a continuous medium with contact resistance," Int. J. Heat and Mass Transfer, 47, pp. 3453-3461, 2004. DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.01.013
  3. R. M. Christensen. K. H. Lo, "Solutions for effective shear properties in three phase sphere and cylinder models". J. Mech. Phys. Solids, 27, pp. 315-330, 1979. DOI: http://dx.doi.org/10.1016/0022-5096(79)90032-2
  4. J.D. Eshelby, "The determination of the elastic field of an ellipsoidal inclusion, and related problems", Proc. of the Royal Society of London, A241, pp. 376-396, 1957. DOI: http://dx.doi.org/10.1098/rspa.1957.0133
  5. T. Mori, K. Tanaka, "Average stress in the matrix and average elastic energy of materials with misfitting inclusions", Acta Metallurgica, 21, pp. 571-574, 1973. DOI: http://dx.doi.org/10.1016/0001-6160(73)90064-3
  6. H. Hatta, M. Taya, "Equivalent inclusion method for steady state heat conduction in composites," Int. J. Engng. Sci., 24, pp. 1159-1172, 1986. DOI: http://dx.doi.org/10.1016/0020-7225(86)90011-X
  7. Y. Benveniste, T. Miloh, "On the effective thermal conductivity of coated short fiber composites," J. Appl. Phys., 69, pp. 1337-1344, 1991. DOI: http://dx.doi.org/10.1063/1.347269
  8. M.L. Dunn, M. Taya, "The effective thermal conductivity of composites with coated reinforcement and the application to imperfect interfaces," J. Appl. Phys., 73, pp. 1711-1722, 1993. DOI: http://dx.doi.org/10.1063/1.353206
  9. H. Hatta, M. Taya, "Thermal conductivity of coated filler compostes," J. Appl. Phys., 59, pp. 1851-1860, 1986. DOI: http://dx.doi.org/10.1063/1.336412
  10. S. Y. Lu, "Effective conductivities of aligned spheroid dispersions estimated by an equivalent inclusion model," J. Appl. Phys., 84, pp. 2647-2655, 1998. DOI: http://dx.doi.org/10.1063/1.368377
  11. H. Bhatt, K.Y. Donaldson, D.P.H. Hasselman, R.T. Bhatt, "Role of the Interfacial Thermal Barrier in the Effective Thermal Diffusivity/Conductivity of SiC-Fiber-Reinforced Reaction-Bonded Silicon Nitride," J. Am. Ceram. Soc., 73, pp. 312-316, 1990. DOI: http://dx.doi.org/10.1111/j.1151-2916.1990.tb06511.x
  12. T. Miloh, Y. Benveniste, "A generalized selfconsistent method for the effective conductivity of composites with ellipsoidal inclusions and cracked bodies," J. Appl. Phys., 63, pp. 789-796, 1988. DOI: http://dx.doi.org/10.1063/1.340071
  13. J. K. Lee, J. G. Kim, "Generalized Self-Consistent Model for Predicting Thermal Conductivity of Composites with Aligned Short Fibers," Materials Transactions, 51, pp. 2039-2044, 2010. DOI: http://dx.doi.org/10.2320/matertrans.M2010249
  14. J. K. Lee, "Prediction of thermal conductivity of aligned short fibre composites with different fibre aspect raios," Polymers & Polymer Composites, 15, pp. 273-280, 2007.
  15. J. K. Lee, J. G. Kim, "Analytical Study on Effective Thermal Conductivity of Three-Phase Composites," J. the Korea Academia-Industrial Cooperation Soc., 12, pp. 2931-2938, 2011. DOI: http://dx.doi.org/10.5762/KAIS.2011.12.7.2931