DOI QR코드

DOI QR Code

A Study on Thermal Deformations of AC7A Tire Mold Casting Material by Pre-Heating Temperatures of Permanent Casting System

금형주조장치의 예열온도에 따른 타이어 몰드용 AC7A 주조재의 열변형에 관한 연구

  • Choi, Je-Se (Department of Advanced Parts and Materials Engineering, Chosun University) ;
  • Choi, Byung-Hui (Department of Automobiles, Chosun College of Science & Technology)
  • 최제세 (조선대학교 첨단부품소재공학과) ;
  • 최병희 (조선이공대학교 자동차과)
  • Received : 2013.03.13
  • Accepted : 2013.06.07
  • Published : 2013.06.30

Abstract

The precision and endurance of tire mold are very important factors to decide the quality of tire. However, the investigation on the thermal deformation of tire mold has a lot of trouble because the tire mold is produced in airtight permanent casting material. In this study, the thermal deformations such as temperature, displacement and stress distributions inside the AC7A tire mold casting material were analyzed by numerical analysis according to the preheating temperature of permanent casting device. In order to verify the results of numerical analysis, the experiments for temperature measurement of the AC7A casting material were carried out under the same condition with numerical analysis. For the numerical analysis, "COMSOL Multiphysics" was used. The preheating temperatures were set up $150^{\circ}C$, $200^{\circ}C$, $250^{\circ}C$ and $300^{\circ}C$, respectively. The thermal deformations were calculated in each case. When the preheating temperature is $300^{\circ}C$, displacement and stress are the lowest with 0.25mm and 0.351GPa, but the temperature is the highest with $374.27^{\circ}C$. When the experimental results were compared with the numerical results, there were some temperature differences because of the latent heat by phase change heat transfer. However, the cooling patterns were almost similar except for the latent heat section.

타이어 몰드의 내구성과 정밀도는 타이어의 품질을 결정하는 매우 중요한 요인이다. 그러나 타이어 몰드를 제작하는데 있어서 밀폐된 주조장치 안에서 발생하는 주물의 열변형을 측정하는 데는 많은 어려움이 있다. 본 연구에서는 금형주조장치의 예열온도에 따른 타이어 몰드용 AC7A 주조재의 온도분포, 변위, 응력과 같은 열변형을 수치해석을 통해 분석하였고, 동일 조건하에서 AC7A 주조재의 온도분포를 실험을 통해 측정하여 수치해석 결과와 비교하였다. 수치해석을 위해 상용프로그램인 "COMSOL Multiphysics"를 사용하였고, 금형주조장치의 예열온도를 $150^{\circ}C$, $200^{\circ}C$, $250^{\circ}C$, $300^{\circ}C$로 바꾸어 수치해석을 실행하였다. 수치해석 결과 금형주조장치의 예열온도가 $300^{\circ}C$였을 경우에 주조재의 평균변위와 평균응력은 각각 0.25mm와 0.351GPa로 가장 작게 나타났고, 평균온도는 $374.27^{\circ}C$로 온도가 가장 높게 나타나는 것을 확인할 수 있었다. 수치해석에 의한 온도분포 결과와 실험에 의한 온도분포 결과를 비교하였을 때, 냉각 초기에 상변화과정에서 발생하는 잠열로 인해 약간의 온도차이가 발생하였으나, 그 구간을 제외하고는 거의 비슷한 냉각패턴을 나타내는 것을 확인할 수 있었다.

Keywords

References

  1. G. W. Kim, H. S. JUNG, J. R. CHO, Y. S. YANG, Finite element analysis in residual aligning torque and frictional energy of a tire with detailed tread blocks. Transactions of KSAE, pp. 173-180, Vol. 12, No. 6, 2004.
  2. B. G. Rhee, S. M. Oh, Study on the friction characteristics for automotive tires. The Korea Academia-Industrial Cooperation Society, pp. 1535-1540, Vol. 9, No. 6, 2008. DOI: http://dx.doi.org/10.5762/KAIS.2008.9.6.1535
  3. D. W. Lee, S. R. Kim, S. S. Cho, Optimization of Tire Contour by using GA and DOE. The Korea Academia-Industrial Cooperation Society, pp. 1063-1069, Vol. 12, No. 3, 2011. DOI: http://dx.doi.org/10.5762/KAIS.2011.12.3.1063
  4. Y. K. OH, H. S. YOON, H. D. YANG. A study on thermal deformation of AC4C aluminum alloy casting material for tire mold in matal casting method. International Journal of Modern Physics B, pp. 2243-2248, Vol. 24, No. 15-16, 2010. DOI: http://dx.doi.org/10.1142/S0217979210064733
  5. S. V. SHEPEL, M. PAOLUCCI. Numerical simulation of filling and solidification of permanent mold casting. Applied Thermal Engineering, pp. 229-248, Vol. 22, 2002. DOI: http://dx.doi.org/10.1016/S1359-4311(01)00068-0
  6. T. R. VIJAYARAM, S. SULAIMAN, A. M. S. HAMOUDA, M. H. M. AHMAD. Numerical simulation of casting solidification in permanent metallic mold. Journal of Materials Processing Technology, pp. 29-33, Vol. 178, 2006. DOI: http://dx.doi.org/10.1016/j.jmatprotec.2005.09.025
  7. C. P. HONG, T. UMEDA, Y. KIMURA. Boundary Elements. Berlin: Spring-Verlag, Vol. 153, 1983.
  8. S. KANG, N. ZABARAS. Control of the freezing interface motion in two-dimensional solidification processes using the adjoint method. International Journal for Numerical Methods in Engineering, pp.63-80, Vol. 38, No. 1, 1995. https://doi.org/10.1002/nme.1620380105
  9. O. RICHMOND, R. H. TIEN. Thermal stress and air-gap formation during the early stage of solidification in a rectangular mold. Journal of Mechanics, pp. 481-486, Vol. 49, 1971.
  10. Aluminum Association. Aluminum standard and data, Aluminum Association, Inc. 2000.
  11. Aluminum Association. International alloy designations and chemical composition limits for wrought aluminum and wrought aluminum alloys, Aluminum Association, Inc. 2001.
  12. H. E. BOYER, T. L. GALL. Metal Handbook, American Society for Metals, Materials Park, 1985.