참고문헌
- Ahmad A, Banerjee S, Wang Z, et al (2008). Plumbagin-induced apoptosis of human breast cancer cells is mediated by inactivation of NF-kappaB and Bcl-2. J Cell Biochem, 105, 1461-71. https://doi.org/10.1002/jcb.21966
- Aziz MH, Dreckschmidt NE, Verma AK (2008). Plumbagin, a medicinal plant-derived naphthoquinone, is a novel inhibitor of the growth and invasion of hormone-refractory prostate cancer. Cancer Res, 68, 9024-32. https://doi.org/10.1158/0008-5472.CAN-08-2494
- Barchowsky A, Dudek EJ, Treadwell MD, et al (1996). Arsenic induces oxidant stress and NF-KB activation in cultured aortic endothelial cells. Free Radic Biol Med, 21, 783-90. https://doi.org/10.1016/0891-5849(96)00174-8
- Castro FA, Mariani D, Panek AD, et al (2008). Cytotoxicity Mechanism of Two Naphthoquinones (Menadione and Plumbagin) in Saccharomyces cerevisiae. PLoS One, 3, e3999. https://doi.org/10.1371/journal.pone.0003999
- Deng L, Adachi T, Kitayama K, et al (2008). Hepatitis C virus infection induces apoptosis through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway. J Virol, 82, 10375-85. https://doi.org/10.1128/JVI.00395-08
- Ding YX, Chen ZJ, Liu S, et al (2005). Inhibition of Nox-4 activity by plumbagin, a plant-derived bioactive naphthoquinone. J Pharm Pharmacol, 57, 111-6. https://doi.org/10.1211/0022357055119
- Freedman VH, Shin SI (1974). Cellular tumorigenicity in nude mice: correlation with cell growth in semi-solid medium. Cell, 3, 355-9. https://doi.org/10.1016/0092-8674(74)90050-6
- Hengartner MO (2000).The biochemistry of apoptosis. Nature, 407, 770-6. https://doi.org/10.1038/35037710
- Hsu YL, Cho CY, Kuo PL, et al (2006). Plumbagin (5-Hydroxy-2 -methyl-1, 4-naphthoquinone) induces apoptosis and cell cycle arrest in A549 cells through p53 accumulation via c-Jun NH2-terminal kinase-mediated phosphorylation at serine 15 in vitro and in vivo. J Pharmacol Exp Ther, 318, 484-94. https://doi.org/10.1124/jpet.105.098863
- Imlay J, Fridovich I (1992). Exogenous quinones directly inhibit the respiratory NADH dehydrogenase in Escherichia coli. Arch Biochem Biophys, 296, 337-46. https://doi.org/10.1016/0003-9861(92)90581-G
- Jemal A, Siegel R, Ward E, et al (2009). Cancer statistics, 2009. CA Cancer J Clin, 59, 225-49. https://doi.org/10.3322/caac.20006
- Kawiak A, Zawacka-Pankau J, Lojkowska E (2012). Plumbagin induces apoptosis in Her2-overexpressing breast cancer cells through the mitochondrial-mediated pathway. J Nat Prod, 75, 747-51. https://doi.org/10.1021/np3000409
- Karin M (2006). Nuclear factor-kappaB in cancer development and progression. Nature, 441, 431-6. https://doi.org/10.1038/nature04870
- Kuo PL, Hsu YL, Cho CY (2006). Plumbagin induces G2-M arrest and autophagy by inhibiting the AKT/mammalian target of rapamycin pathway in breast cancer cells. Mol Cancer Ther, 3, 209-21.
- Krysko DV, Vanden Berghe T, D'Herde K, et al (2008). Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods, 44, 205-21. https://doi.org/10.1016/j.ymeth.2007.12.001
-
Li J, Shen L, Lu FR, et al (2012). Plumbagin inhibits cell growth and potentiates apoptosis in human gastric cancer cells in vitro through the NF-
$\kappa B$ signaling pathway. Acta Pharmacol Sin, 33, 242-9. https://doi.org/10.1038/aps.2011.152 - Manu KA, Shanmugam MK, Rajendran P, et al (2011). Plumbagin inhibits invasion and migration of breast and gastric cancer cells by downregulating the expression of chemokine receptor CXCR4. Mol Cancer, 10, 107. https://doi.org/10.1186/1476-4598-10-107
- Mocellin S, Rossi CR, Pilati P, et al (2005). Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev, 16, 35-53. https://doi.org/10.1016/j.cytogfr.2004.11.001
- Mossa JS, El-Feraly FS, Muhammad I (2004). Antimycobacterial constituents from juniperus procera, ferula communis and plumbago zeylanica and their in vitro synergistic activity with isonicotinic acid hydrazide. Phytother Res, 18, 934-7. https://doi.org/10.1002/ptr.1420
- Nair S, Nair RR, Srinivas P, et al (2008). Radiosensitizing effects of plumbagin in cervical cancer cells is through modulation of apoptotic pathway. Mol Carcino, 47, 22-33. https://doi.org/10.1002/mc.20359
- Nasuhara Y, Adcock IM, Catley M, et al (1999). Differential IkappaB kinase activation and IkappaBalpha degradation by interleukin-1beta and tumor necrosis factor-alpha in human U937 monocytic cells. Evidence for additional regulatory steps in kappaB-dependent transcription. J Biol Chem, 274, 19965-72. https://doi.org/10.1074/jbc.274.28.19965
- Ngo EO, Sun TP, Chang JY, et al (1991). Menadione-induced DNA damage in a human tumor cell line. Biochem Pharmacol, 42, 1961-8. https://doi.org/10.1016/0006-2952(91)90596-W
- Noto V, Taper HS, Jiang YH, et al (1989). Effects of sodium ascorbate (vitamin C) and 2-methyl-1, 4-naphthoquinone (vitamin K3) treatment on human tumor cell growth in vitro. I. Synergism of combined vitamin C and K3 action. Cancer, 63, 901-6. https://doi.org/10.1002/1097-0142(19890301)63:5<901::AID-CNCR2820630518>3.0.CO;2-G
- Ohe Y, Ohashi Y, Kubota K, et al (2007).Randomized phase III study of cisplatin plus irinotecan versus carboplatin plus paclitaxel, cisplatin plus gemcitabine, and cisplatin plus vinorelbine for advanced non-small-cell lung cancer: Four-Arm Cooperative Study in Japan. Ann Oncol, 18, 317-23.
- Powolny AA, Singh SV (2008). Plumbagin-induced apoptosis in human prostate cancer cells is associated with modulation of cellular redox status and generation of reactive oxygen species. Pharm Res, 25, 2171-80. https://doi.org/10.1007/s11095-008-9533-3
- Pujol JL, Barlesi F, and Daures JP (2006). Should chemotherapy combinations for advanced non-small cell lung cancer be platinum-based? A meta-analysis of phase III randomized trials. Lung Cancer, 51, 335-45. https://doi.org/10.1016/j.lungcan.2005.11.001
-
Qian Y, Guan T, Huang M, et al (2012). Neuroprotection by the soy isoflavone, genistein, via inhibition of mitochondriadependent apoptosis pathways and reactive oxygen induced-NF-
$\kappa B$ activation in a cerebral ischemia mouse model. Neurochem Int, 60, 759-67. https://doi.org/10.1016/j.neuint.2012.03.011 -
Sandur SK, Ichikawa H, Sethi G, et al (2006). Plumbagin (5-Hydroxy-2-methyl-1, 4-naphthoquinone) suppresses NF-
$\kappa B$ activation and NF-$\kappa B$ -regulated gene products through modulation of p65 and$I\kappa B$ kinase activation, leading to potentiation of apoptosis induced by cytokine and chemotherapeutic agents. J Biol Chem, 281, 17023-33. https://doi.org/10.1074/jbc.M601595200 -
Shieh JM, Chiang TA, Chang WT, et al (2010). Plumbagin inhibits TPA-induced MMP-2 and u-PA expressions by reducing binding activities of NF
$\kappa B$ and AP-1 via ERK signaling pathway in A549 human lung cancer cells. Mol Cell Biochem, 335, 181-93. https://doi.org/10.1007/s11010-009-0254-7 - Srinivas P, Gopinath G, Banerji A, et al (2004). Plumbagin induces reactive oxygen species, which mediate apoptosis in human cervical cancer cells. Mol Carcinog, 40, 201-11. https://doi.org/10.1002/mc.20031
- Thasni KA, Rakesh S, Rojini G, et al (2008). Estrogen-dependent cell signaling and apoptosis in BRCA1-blocked BG1 ovarian cancer cells in response to plumbagin and other chemotherapeutic agents. Ann Oncol, 19, 696-705.
- Wang CC, Chiang YM, Sung SC, et al (2008). Plumbagin induces cell cycle arrest and apoptosis through reactive oxygen species/c-Jun N-terminal kinase pathways in human melanoma A375.S2 cells. Cancer Lett, 259, 82-98. https://doi.org/10.1016/j.canlet.2007.10.005
- Xu KH, Lu DP (2010). Plumbagin induces ROS-mediated apoptosis in human promyelocytic leukemia cells in vivo. Leuk Res, 34, 658-65. https://doi.org/10.1016/j.leukres.2009.08.017
피인용 문헌
- Mechanism of Fatty Acid Synthase in Drug Tolerance Related to Epithelial-mesenchymal Transition of Breast Cancer vol.15, pp.18, 2014, https://doi.org/10.7314/APJCP.2014.15.18.7617
- Plumbagin Modulates Leukemia Cell Redox Status vol.19, pp.7, 2014, https://doi.org/10.3390/molecules190710011
- Plumbagin reduces human colon cancer cell survival by inducing cell cycle arrest and mitochondria-mediated apoptosis vol.45, pp.5, 2014, https://doi.org/10.3892/ijo.2014.2592
- Plumbagin Downregulates Wnt Signaling Independent of p53 in Human Colorectal Cancer Cells vol.77, pp.5, 2014, https://doi.org/10.1021/np4010085
- Plumbagin induces growth inhibition of human glioma cells by downregulating the expression and activity of FOXM1 vol.121, pp.3, 2015, https://doi.org/10.1007/s11060-014-1664-2
- Overexpression of interleukin-18 protein reduces viability and induces apoptosis of tongue squamous cell carcinoma cells by activation of glycogen synthase kinase-3β signaling vol.33, pp.3, 2015, https://doi.org/10.3892/or.2015.3724
- 99mTc labeled plumbagin: estrogen receptor dependent examination against breast cancer cells and comparison with PLGA encapsulated form vol.308, pp.1, 2016, https://doi.org/10.1007/s10967-015-4284-1
- Anticancer Properties and Pharmaceutical Applications of Plumbagin: A Review vol.45, pp.03, 2017, https://doi.org/10.1142/S0192415X17500264
- Plumbagin exhibits an anti-proliferative effect in human osteosarcoma cells by downregulating FHL2 and interfering with Wnt/β-catenin signalling vol.12, pp.2, 2016, https://doi.org/10.3892/ol.2016.4725
- Current development in novel drug delivery systems of bioactive molecule plumbagin pp.2169-141X, 2018, https://doi.org/10.1080/21691401.2017.1417865
- Plumbagin-mediating GLUT1 suppresses the growth of human tongue squamous cell carcinoma vol.24, pp.6, 2018, https://doi.org/10.1111/odi.12799