참고문헌
- Arden KC (2007). FoxOs in tumor suppression and stem cell maintenance. Cell, 128, 235-7. https://doi.org/10.1016/j.cell.2007.01.009
- Burgess R, Jenkins R, Zhang Z (2008). Epigenetic changes in gliomas. Cancer Biol Ther, 7, 1326-34. https://doi.org/10.4161/cbt.7.9.6992
- Castrillon DH, Miao I, Kollipara R, et al (2003). Suppression of ovarian folic leactivation in mice by the transcription fator Foxo3a. Science, 301, 215-8. https://doi.org/10.1126/science.1086336
- Cummins JM, He Y, Leary RJ, et al ( 2006). The colorectal microRNAome. Proc Natl Acad Sci USA, 103, 3687-92. https://doi.org/10.1073/pnas.0511155103
- Greer EL, Brunet A (2005). FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene, 24, 7410-25. https://doi.org/10.1038/sj.onc.1209086
- Hu MC, Lee DF, Xia W, et al (2004). IkappaB kinase promotes tumor genesis throug h inhibition of forkhead FOXO3a. Cell, 11, 225-37. https://doi.org/10.1023/B:CELL.0000025425.00668.de
- Lee CC, Putnam AJ, Miranti CK, et a1 (2004). Overexpression of sprouty 2 inhibits HGF/SF-mediated cell growth, invasion, migration, and cytokinesis. Oncogene, 23, 5193-202. https://doi.org/10.1038/sj.onc.1207646
- Li X, Mertens-Talcott S U, Zhang S, et al (2010). MicroRNA-27a indirectly regulates estrogen receptor {alpha} expression and hormone responsiveness in MCF-7 breast cancer cells. Endocrinology, 151, 2462-73. https://doi.org/10.1210/en.2009-1150
- Lim J, Wong ES, Ong SH, et a1 (2000). Sprouty proteins are targeted to membrane ruffles upon growth factor receptor tyrosine kinase activation: Identification of a novel translocation domain. J Bio1 Chem, 275, 32837-45. https://doi.org/10.1074/jbc.M002156200
- Liu T, Tang H, Lang Y, et al (2009). MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett, 273, 233-42. https://doi.org/10.1016/j.canlet.2008.08.003
- Ma Y, Yu S, Zhao W, et al (2010). miR-27a regulates the growth, colony formation and migration of pancreatic cancer cells by targeting Sprouty2. Cancer Lett, 298, 150-8. https://doi.org/10.1016/j.canlet.2010.06.012
- Mourelatos Z, Dostie J, Paushkin S, et al (2002). miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev, 16, 720-8. https://doi.org/10.1101/gad.974702
- Paik JH, Kollipara R Chu G, et al (2007). FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell, 128, 309-23 https://doi.org/10.1016/j.cell.2006.12.029
- Papagiannakopoulos T, Shapiro A, Kosik KS (2008). MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res, 68, 8164-72. https://doi.org/10.1158/0008-5472.CAN-08-1305
- Seoane J, Le HV, Shen L, et a1 (2004). Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell, 117, 211-23 https://doi.org/10.1016/S0092-8674(04)00298-3
- Sevignani C, Calin GA, Siracusa LD, et al (2006). Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome, 17, 189-202. https://doi.org/10.1007/s00335-005-0066-3
- Wang Q, Li DC, Li ZF, et al (2011). Upregulation of miR-27a contributes to the malignant transformation of human bronchial epithelial cells induced by SV40 small T antigen. Oncogene, 30, 3875-86. https://doi.org/10.1038/onc.2011.103
- Yamamura Y, Lee W L, Inoue K, et al (2006). RUNX3 cooperates with FoxO3a to induce apoptosis in gastric cancer cells. J Biol Chem, 281, 5267-76. https://doi.org/10.1074/jbc.M512151200
- Yigzaw Y, Poppleton HM, Sreejayan N, et a1 (2003). Protein-tyrosine phosphatase-1 B(PTP 1 B)mediates the anti-migratory actions of Sprouty. J Bio1 Chem, 278, 284-8.
- Yigzaw Y, Cartin L, Pierre S, et a1 (2001). The C terminus of sprouty is important for modulation of cellular migration and proliferation. J Bio1 Chem, 276, 22742-7. https://doi.org/10.1074/jbc.M100123200
피인용 문헌
- From microRNA functions to microRNA therapeutics: Novel targets and novel drugs in breast cancer research and treatment vol.43, pp.4, 2013, https://doi.org/10.3892/ijo.2013.2059
- Comparison of Linear Accelerator and Helical Tomotherapy Plans for Glioblastoma Multiforme Patients vol.15, pp.18, 2014, https://doi.org/10.7314/APJCP.2014.15.18.7811
- Association of a Pre-miR-27a Polymorphism with Cancer Risk: an Updated Meta-analysis vol.15, pp.23, 2015, https://doi.org/10.7314/APJCP.2014.15.23.10107
- MiR-323-5p acts as a Tumor Suppressor by Targeting the Insulin-like Growth Factor 1 Receptor in Human Glioma Cells vol.15, pp.23, 2015, https://doi.org/10.7314/APJCP.2014.15.23.10181
- Expression and Prognostic Implications of FOXO3a and Ki67 in Lung Adenocarcinomas vol.16, pp.4, 2015, https://doi.org/10.7314/APJCP.2015.16.4.1443
- miR-27a suppresses the clonogenic growth and migration of human glioblastoma multiforme cells by targeting BTG2 vol.46, pp.4, 2015, https://doi.org/10.3892/ijo.2015.2843
- expression: microRNAs and beyond vol.174, pp.12, 2016, https://doi.org/10.1111/bph.13471
- Analysis of EZH2: micro-RNA network in low and high grade astrocytic tumors vol.33, pp.2, 2016, https://doi.org/10.1007/s10014-015-0245-1
- Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: New trends in the development of miRNA therapeutic strategies in oncology (Review) vol.49, pp.1, 2016, https://doi.org/10.3892/ijo.2016.3503
- MicroRNAs in glioblastoma multiforme pathogenesis and therapeutics vol.5, pp.8, 2016, https://doi.org/10.1002/cam4.775
- Critical role of FOXO3a in carcinogenesis vol.17, pp.1, 2018, https://doi.org/10.1186/s12943-018-0856-3