DOI QR코드

DOI QR Code

Genetic Diversity and Population Structure of Korean Mint Agastache rugosa (Fisch & Meyer) Kuntze (Lamiaceae) Using ISSR Markers

  • Kang, Man Jung (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA) ;
  • Sundan, Suresh (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA) ;
  • Lee, Gi An (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA) ;
  • Ko, Ho Cheol (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA) ;
  • Chung, Jong Wook (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA) ;
  • Huh, Yun Chan (Vegetable Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Gwag, Jae Gyun (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA) ;
  • Oh, Se Jong (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA) ;
  • Kim, Yeon Gyu (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA) ;
  • Cho, Gyu Taek (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA)
  • Received : 2012.11.12
  • Accepted : 2013.01.25
  • Published : 2013.06.30

Abstract

Agastache rugosa, a member of the mint family (Labiatae), is a perennial herb widely distributed in East Asian countries. It is used in traditional medicine for the treatment of cholera, vomiting, and miasma. This study assessed the genetic diversity and population structures on 65 accessions of Korean mint A. rugosa germplasm based on inter simple sequence repeat (ISSR) markers. The selected nine ISSR primers produced reproducible polymorphic banding patterns. In total, 126 bands were scored; 119 (94.4%) were polymorphic. The number of bands generated per primer varied from 7 to 18. A minimum of seven bands was generated by primer 874, while a maximum of 18 bands was generated by the primer 844. Six primers (815, 826, 835, 844, 868, and 874) generated 100% polymorphic bands. This was supported by other parameters such as total gene diversity ($H_T$) values, which ranged from 0.112 to 0.330 with a mean of 0.218. The effective number of alleles ($N_E$) ranged from 1.174 to 1.486 with a mean value of 1.351. Nei's genetic diversity (H) mean value was 0.218, and Shannon's information index (I) mean value was 0.343. The high values for total gene diversity, effective number of alleles, Nei's genetic diversity, and Shannon's information index indicated substantial variations within the population. Cluster analysis showed characteristic grouping, which is not in accordance with their geographical affiliation. The implications of the results of this study in developing a strategy for the conservation and breeding of A. rugosa and other medicinal plant germplasm are discussed.

Keywords

References

  1. Bernath, J. 1996. Conventional breeding methods and their effectiveness in selection of medicinal and aromatic plants. In Proceedings of the First International Symposium on Breeding Research on Medicinal and Aromatic Plants, Quedlinburg, Germany. pp. 154-161.
  2. Bernath, J. 2002. Strategies and recent achievements in selection of medicinal and aromatic plants. Acta. Hortic. 576:65-68.
  3. Bornet, B. and M. Branchard. 2001. Nonanchored inter simple sequence repeat (ISSR) markers: reproducible and specific tools for genome fingerprinting. Plant Mol. Biol. Rep. 19:209-215. https://doi.org/10.1007/BF02772892
  4. Bornet, B., F. Goraguer, G. Joly and M. Branchard. 2002. Genetic diversity in European and Argentinian cultivated potatoes (Solanum tuberosum subsp. tuberosum) detected by inter-simple sequence repeats (ISSRs). Genome 45:481-484. https://doi.org/10.1139/g02-002
  5. Cantino, P.D., R.M. Harley and S.J. Wagstaff. 1992. Genera of the Labiatae, status and classification. In Harley R.M. and T. Reynolds (eds.), Advances in Labiate Science, Royal Botanic Gardens, Kew. London, UK. pp. 511-522.
  6. Capo-chichi, L.J.A., D.B. Weaver and C.M. Morton. 2003. The use of molecular markers to study genetic diversity in Mucuna. Trop. Subtrop. Agroecosyst 1:309-318.
  7. Chen, J.M., W.R. Gituru, Y.H. Wang and Q.F. Wang. 2006. The extent of clonality and genetic diversity in the rare Caldesia grandis (Alismataceae): comparative results for RAPD and ISSR markers. Aquat. Bot. 84:301-307. https://doi.org/10.1016/j.aquabot.2005.11.008
  8. Dellaporta, S., J. Wood and J.B. Hicks. 1983. A plant DNA minipreparation: version l. Plant Mol. Biol. Rep. 1:19-21. https://doi.org/10.1007/BF02712670
  9. Dwivedi, S.L., S. Gurtu, S. Chandra, W. Yuejin and S.N. Nigam. 2001. Assessment of genetic diversity among selected groundnut germplasm. Plant Breed. 120:345-349. https://doi.org/10.1046/j.1439-0523.2001.00613.x
  10. Fracaro, F. and S. Echeverrigaray. 2006. Genetic variability in Hesperozygis ringens Benth. (Lamiaceae), an endangered aromatic and medicinal plant of Southern Brazil. Biochem. Genet. 44:479-490.
  11. Gajera, B.B., N. Kumar, A.S. Singh, B. Singh Punvara, R. Ravikirana, N. Subhasha and G.C. Jadejab. 2010. Assessment of genetic diversity in castor (Ricinus communis L.) using RAPD and ISSR markers. Ind. Crops Prod. 32:491-498. https://doi.org/10.1016/j.indcrop.2010.06.021
  12. Goulao, L., T. Valdiviesso, C. Santana and C.M. Oliveira. 2001. Comparison between phenetic characterisation using RAPD and ISSR markers and phenotypic data of cultivated chestnut (Castanea sativa Mill.). Genet. Resour. Crop Evol. 48:329-338. https://doi.org/10.1023/A:1012053731052
  13. Harley, R.M., S. Atkins, A.L. Budantsev, P.D. Cantino, B.J. Conn, R.J. Grayer, M.M. Harley, R.P.J. de Kok, T.V. Krestovskaja, R. Morales, A.J. Paton and P. Olof Ryding. 2004. Labiatae. In Kubitzki K. and J.W. Kadereit (eds.), The families and genera of vascular plants, Vol. VII. Springer-Verlag, Heidelberg, Germany. pp. 167-275.
  14. Hu, Y.P., L. Wang, X.L. Xie, J. Yang, Y. Li and H.G. Zhang. 2010. Genetic diversity of wild populations of Rheum tanguticum endemic to China as revealed by ISSR analysis. Biochem. Syst. Ecol. 38:264-274. https://doi.org/10.1016/j.bse.2010.01.006
  15. Ikbal, K.S. Boora and R.S. Dhillon. 2010. Evaluation of genetic diversity in Jatropha curcus using RAPD markers. Indian J. Biotechnol. 9:50-57.
  16. Jung, B.S. and M.K. Shin 1990. Encyclopedia of Korean Crude Drugs. Youngrim Sa, Seoul, Korea. p. 840.
  17. Li, J.M. and Z.X. Jin. 2008. Genetic structure of endangered Emmenopterys henryi Oliv. based on ISSR polymorphism and implications for its conservation. Genetica 133:227-234. https://doi.org/10.1007/s10709-007-9204-z
  18. Louis, L. 1980. Biology of the Gene. C.V. Mosby Company, London, UK. p. 151.
  19. Nagaoka, T. and Y. Ogihara. 1997. Applicability of intersimple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor. Appl. Genet. 94:597-602. https://doi.org/10.1007/s001220050456
  20. Padmesh, P., J.V. Reji, M. Jinish Dhar and S. Seeni. 2006. Estimation of genetic diversity in varieties of Mucuna pruriens using RAPD. Biol. Plant 50:367-372. https://doi.org/10.1007/s10535-006-0051-z
  21. Padmesh, P.P., S.S. Jayakumari, K.M. Menon, K.S.P. Jayakumar and S. Apian. 2012. ISSR analysis reveals high intraspecific variation in Rauvolfia serpentina L. - a high value medicinal plant. Biochem. Syst. Ecol. 40:192-197. https://doi.org/10.1016/j.bse.2011.10.019
  22. Peng, S., N. Feng, M. Guo, Y. Chen and Q. Guo. 2008. Genetic variation of Carthamus tinctorius L. and related species revealed by SRAP analysis. Biochem. Syst. Ecol. 36:531-538. https://doi.org/10.1016/j.bse.2008.03.010
  23. Qian, W., S. Ge and D.Y. Hong. 2001. Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers. Theor. Appl. Genet. 102:440-449. https://doi.org/10.1007/s001220051665
  24. Ratnaparkhe, M.B., M. Tekeoglu and F.J. Muehlbauer 1998. Inter-simple-sequence-repeat (ISSR) polymorphisms are useful for finding markers associated with disease resistance gene clusters. Theor. Appl. Genet. 97:515-519. https://doi.org/10.1007/s001220050925
  25. Sofia, S.H., C.R.M. Silva, B.A. Galindo, F.S. Almeida, L.M.K. Sodre and B.R.M. Claudia. 2006. Population genetic structure of Astyanax scabripinis (Teleostei, Characidae) from an urban stream. Hydrobiology 553:245-254. https://doi.org/10.1007/s10750-005-1106-4
  26. Thorne, R.F. 1992. Classification and geography of the flowering plants. Bot. Rev. 58:225-348.
  27. Wang, C., H. Zhang, Z.Q. Qian and G.F. Zhao. 2008. Genetic differentiation in endangered Gynostemma pentaphyllum (Thunb.) Makino based on ISSR polymorphism and its implications for conservation. Biochem. Syst. Ecol. 36:699-705. https://doi.org/10.1016/j.bse.2008.07.004
  28. Wang, Z., J.L. Weber, G. Zhong and S.D. Tanksley. 1994. Survey of plant short tandem DNA repeats. Theor. Appl. Genet. 88:1-6.
  29. Waugh, R. and W. Powell. 1992. Using RAPD markers for crop improvement. Trends Biotech. 10:186-191. https://doi.org/10.1016/0167-7799(92)90212-E
  30. Weverstahl, P., H. Marshall, E. Mantenffel and S. Humeck. 1992. Volatile constituents of Agastache rugosa. J. Essent. Oil Res. 4:585-587. https://doi.org/10.1080/10412905.1992.9698139
  31. Wolfe, A.D., Q.Y. Xiang and S.R. Kephart. 1998. Assessing hybridization in natural populations of Penstemon (Scrophulariaceae) using hypervariable inter simple sequence repeat (ISSR) bands. Mol. Ecol. 7:1107-1125. https://doi.org/10.1046/j.1365-294x.1998.00425.x
  32. Wu, Y.G., Q.S. Guo, J.C. He, Y.F. Lin, L.J. Luo and G.D. Liu. 2010. Genetic diversity analysis among and within populations of Pogostemon cablin from China with ISSR and SRAP markers. Biochem. Syst. Ecol. 38:63-72. https://doi.org/10.1016/j.bse.2009.12.006
  33. Yang, S., X. Lu, R. Ye, Y Li., Y. Zhou, P. Yue, J. Zhao, C. Zhang and M. Peng. 2010. Genetic diversity and population structure in Meconopsis quintuplinervia (Papaveraceae). African J. Biotechnol. 9:3048-3053.
  34. Yang, W.P., A.C. De Oliveira, I. Godwin, K. Schertz and J.L. Bennetzen. 1996. Comparison of DNA marker technologies in characterizing plant genome diversity: variability in Chinese sorghums. Crop Sci. 36:1669-1676. https://doi.org/10.2135/cropsci1996.0011183X003600060042x
  35. Ye, C.J., Z.W. Yu, F.N. Kong, S.W. Wu and B. Wang. 2005. RISSR as a new tool for genomic fingerprinting, mapping, and gene tagging. Plant Mol. Biol. Rep. 23:167-177. https://doi.org/10.1007/BF02772707
  36. Yee, E., K.K. Kidwell, G.R. Sills and T.A. Lumpkin. 1999. Diversity among selected Vigna angularis (Azuki) accessions on the basis of RAPD and AFLP markers. Crop Sci. 39:268-275. https://doi.org/10.2135/cropsci1999.0011183X003900010041x
  37. Yeh, F., R. Yang and T. Boyle. 1999. POPGENE version 1.32. Microsoft Window-based freeware for population genetic gnalysis. Molecular Biology and Biotechnology Center, University of Alberta, Canada.
  38. Zietkiewicz, E., A. Rafalski and D. Labuda. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176-183. https://doi.org/10.1006/geno.1994.1151

Cited by

  1. The polyphenolic profiles and antioxidant effects ofAgastache rugosaKuntze (Banga) flower, leaf, stem and root vol.30, pp.2, 2016, https://doi.org/10.1002/bmc.3539
  2. Phenological Assessment for Agronomic Suitability of Some Agastache Species Based on Standardized BBCH Scale vol.11, pp.11, 2021, https://doi.org/10.3390/agronomy11112280