DOI QR코드

DOI QR Code

Optimization of Endoglucanase Production from Fomitopsis pinicola Mycelia

Fomitopsis pinicola 균사체로부터 Endoglucanase의 최적생산

  • Gu, Ji-Min (Department of Biotechnology, Dongguk University) ;
  • Park, Sang-Shin (Department of Biotechnology, Dongguk University)
  • 구지민 (동국대학교 과학기술대학 생명공학과) ;
  • 박상신 (동국대학교 과학기술대학 생명공학과)
  • Received : 2013.01.14
  • Accepted : 2013.03.04
  • Published : 2013.06.28

Abstract

The culture conditions to maximize the production of endoglucanase (EC 3.2.1.4) from the brown rot fungus Fomitopsis pinicola MKACC 54347 mycelia were investigated. Among the tested media for endoglucanase production, Mandel's mineral salts medium (MSM; 1% cellulose, 0.1% peptone, 0.14% $(NH_4)_2SO_4$, 0.03% urea, 0.2% $KH_2PO_4$, 0.03% $MgSO_4{\cdot}7H_2O$, 0.03% $CaCl_2$, and 0.1% trace metal solution (19.8 mM $FeSO_4$, 13.0 mM $MnSO_4$, 12.2 mM $ZnSO_4$, and 15.4 mM $CoCl_2$)) produced the highest activity of the enzyme. To optimize the medium composition for enzyme activity, the effects of various carbon, nitrogen, phosphorus, and inorganic sources were investigated in MSM. Maximal enzyme production was accomplished using a medium containing 2% carboxymethyl cellulose (CMC), 2% yeast extract, 0.2% $KH_2PO_4$, 0.03% $MnSO_4$, and 0.3% trace metal solution. Different physiological conditions, like incubation period and temperature, were also examined to assess their influence on enzyme production. Enzyme production from F. pinicola reached its highest level after cultivation for 8 days at $25^{\circ}C$. Nondenaturing polyacrylamide gel electrophoresis (PAGE), followed by the endoglucanase activity staining using CMC as the substrate, was performed to identify the endoglucanase under the culture conditions studied. Zymogram analysis of the culture supernatant revealed an endoglucanase band with a molecular mass of 52 kDa. The optimum pH and temperature for enzyme activity were $55^{\circ}C$ and pH 5.0, respectively.

소나무잔나비버섯(Fomitopsis pinicola MKACC 54347)의 균사체로부터 endoglucanase를 생산하기 위한 최적 배양조건을 조사하였다. 복합배지 중 MSM이 가장 높은 endoglucanase 활성을 나타내었으며, MSM의 성분과 농도를 각각 2.0% CMC, 2.0% yeast extract, 0.2% $KH_2PO_4$, 0.03% $MnSO_4$ 및 0.3% trace metal 용액으로 첨가하였을 때 효소활성이 가장 우수하였다. 따라서 F. pinicola로부터 endoglucanase를 생산하기 위한 최적 배지조건은 2.0% CMC, 2.0% yeast extract, 0.2% $KH_2PO_4$, 0.03% $MnSO_4$ 및 0.3% trace metal 용액이다. 이상의 배지를 사용하여 배양온도 $25^{\circ}C$에서 8일 동안 배양하였을 때 최대로 효소 활성이 나타내는 것을 확인하였다. CMC를 기질로 사용한 activity staining의 결과를 통해 F. pinicola 균사체의 endoglucanase 활성여부를 확인할 수 있었으며 그 분자량이 43-70 kDa 임을 확인하였고, 배양액 중의 효소활성의 최적 pH와 온도는 각각 pH 5.0과 $55^{\circ}C$인 것으로 나타났다.

Keywords

References

  1. Bayer, E. A., H. Chanzy, R. Lamed, and Y. Shoham. 1998. Cellulose, cellulases and cellulosomes. Cur. Opi. Strucral. Biolo. 8: 548-557. https://doi.org/10.1016/S0959-440X(98)80143-7
  2. Cheng, J. J., C. Y. Lin, H. S. Lur, H. P. Chen, and M. K. Lu. 2008. Properties and biological functions of polysaccharides and ethanolic extracts isolated from medicinal fungus, Fomitopsis pinicola. Process Biochem. 43: 829-834. https://doi.org/10.1016/j.procbio.2008.03.005
  3. Deswal, D., Y. P. Khasa, and R. C. Kuhad. 2011. Optimization of cellulose production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour. Technol. 102: 6065-6072. https://doi.org/10.1016/j.biortech.2011.03.032
  4. Gautam, S. P., P. S. Bundela, A. K. Pandey, J. Khan, and M. K. Awasthi. 2011. Optimization for the production of cellulose enzyme from municipal solid waste residue by two novel cellulolytic fungi. Biotechnol. Res. Int. 2011: Article ID 810425.
  5. Ghose, T. K. 1987. Measurement of cellulose activities. Pure. Appl. Chem. 59: 257-268. https://doi.org/10.1351/pac198759020257
  6. Hyung, S. C. 2003. Studies on the cultural characteristics of cellulose production by Roseofomes subflexibilis. Korean J. Mycol. 31: 77-83. https://doi.org/10.4489/KJM.2003.31.2.077
  7. Jeong, W. H., S. Y. Yang, M. D. Song, J. K. Ha, and C. W. Kim. 2003. Isolation of Bacillus sp. producing xylanase and cellulase and optimization of medium conditions for its production. Korean J. Appl. Microbiol. Biotechnol. 31: 383-388.
  8. Jung, K. H., J. H. Lee, Y. T. Yi, H. K. Kim, and M. Y. Park. 1992. Properties of a novel Clostridium thermocellum endo-β- 1,4-glucanase expressed in Escherichia coli. Korean J. Appl. Microbiol. Biotechnol. 20: 505-510.
  9. Keller, A. C., M. P. Maillard, and K. Hosterttmann. 1996. Antimicrobial steroids form the fungus Fomitopsis pinicola. Phytochem. 41: 1041-1046. https://doi.org/10.1016/0031-9422(95)00762-8
  10. Kim, M. S., J. S. Hong, M. K. Kim, S. Yoon, and Y. H. Choi. 1997. Effects of carbon and nitrogen sources in the production of cellulolytic enzymes by Trametes trogii. Korean J. Mycol. 25: 68-76.
  11. Kuhad, R. C., R. Gupta, and A. Singh. 2011. Microbial cellulases and their industrial applications. Enzyme Res. 2011: Article ID 280696.
  12. Kweon, M. H., H. Jang, W. J. Lim, H. I. Chang, C. W. Kim, H. C. Yang, H. J. Hwang, and H. C. Sung. 1999. Anticomplementary properties of polysaccharides isolated from fruit bodies of mushroom Pleurotus ostreatus. J. Microbiol. Biotechnol. 9: 450-456.
  13. Lee, S. I., J. S. Kim, S. H. Oh, K. Y. Park, H. G. Lee, and S. D. Kim. 2008. Antihyperglycemic effect of Fomitopsis pinicola extracts in streptozotocin-induced diabetic rats. J. Med. Food. 11: 518-524. https://doi.org/10.1089/jmf.2007.0155
  14. Liu, D., R. Zhang, X. Yang, Y. Xu, Z. Thang, W. Tian, and Q. Shen. 2011. Expression, purification and characterization of two thermostable endoglucanases cloned from a lignocellulosic decomposing fungi Aspergillus fumigatus Z5 isolated from compost. Protein Express. Purif. 79: 176-186. https://doi.org/10.1016/j.pep.2011.06.008
  15. Lynd, L. R., P. J. Weimer, W. H. van Zyl, and I. S. Pretorius. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Molecular Biol. Rev. 76: 506-577.
  16. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  17. Nonaka, T., H. Ishikawa, Y. Tsumuraya, Y. Hashimoto, and N. Dohmae. 1995. Characterization of a thermostable lysinespecific metallopeptidase from the fruiting bodies of a basidiomycete, Grifola frondosa. J. Biochem. 118: 1014-1020. https://doi.org/10.1093/jb/118.5.1014
  18. Park, N. and S. S. Park. 2009. Optimal conditions for the laccase production from Fomitopsis pinicola mycelia. Korean J. Microbiol. Biotechnol. 37: 62-68.
  19. Purnomo, A. S., I. Kamci, and R. Kamei. 2008. Degradation of 1, 1, 1-trichloro-2, 2-bis (4-chlorophenyl) ethane (DDT) by brown-rot fungi. J. Biosci. Bioeng. 105: 614-621.
  20. Ren, G., X. Y. Liu, H. K. Zhu, S. Z. Yang, and C. X. Fu. 2006. Evaluation of cytotoxic activities of some medicinal polypore fungi from China. Fitoterapia. 77: 408-410. https://doi.org/10.1016/j.fitote.2006.05.004
  21. Sugimura, M., H. Watanabe, and H. Saito. 2003. Purification, characterization, cDNA cloning and nucleotide sequencing of a cellulase from the yellow-spotted longicorn beetle, Psacothea hilaris. Eur. J. Biochem. 270: 3455-3460. https://doi.org/10.1046/j.1432-1033.2003.03735.x
  22. Sukumaran, R. K., R. R. Singhania, and A. Pandey. 2005. Microbial cellulases-production, applications and challenges. J. Sci. Ind. Res. 64: 832-844.
  23. Tomme, P., R. A. Warran, and N. R. Gilkes. 1995. Cellulose hydrolysis by bacteria and fungi. Adv. Microbial. Physiol. 37: 1-81. https://doi.org/10.1016/S0065-2911(08)60143-5
  24. Wood, T. M. 1992. Fungal cellulases. Biochem. Soc. Trans. 20: 46-53.
  25. Yoon, J. J., C. J. Cha, Y. S. Kim, and W. Kim. 2008. Degradation of cellulose by the major endoglucanase produced from the brown-rot fungus Fomitopsis pinicola. Biotechnol. Lett. 30: 1373-1378. https://doi.org/10.1007/s10529-008-9715-4
  26. Yoon, J. J., C. J. Cha, Y. S. Kim, D. W. Son, and Y. K. Kim. 2007. The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose. J. Microbiol. Biotechnol. 17: 800-805.
  27. Zhang, Y. H., M. E. Himmel, and J. R. Mielenz. 2006. Outlook for cellulose improvement: Screening and selection strategies. Biotechnol. Adv. 24: 452-481. https://doi.org/10.1016/j.biotechadv.2006.03.003

Cited by

  1. A Fomitopsis pinicola Jeseng Formulation Has an Antiobesity Effect and Protects against Hepatic Steatosis in Mice with High-Fat Diet-Induced Obesity vol.2016, pp.None, 2013, https://doi.org/10.1155/2016/7312472