DOI QR코드

DOI QR Code

Properties and Functions of Melanin Pigment from Klebsiella sp. GSK

  • Sajjan, Shrishailnath S. (Department of Biochemistry, Gulbarga University) ;
  • Anjaneya, O (Department of Biochemistry, Gulbarga University) ;
  • Kulkarni, Guruprasad B. (Department of Biochemistry, Gulbarga University) ;
  • Nayak, Anand S. (Department of Biochemistry, Gulbarga University) ;
  • Mashetty, Suresh B. (Department of Biochemistry, Gulbarga University) ;
  • Karegoudar, T.B. (Department of Biochemistry, Gulbarga University)
  • Received : 2012.10.10
  • Accepted : 2012.12.15
  • Published : 2013.03.28

Abstract

Purified melanin pigment from Klebsiella sp. GSK was characterized by thermogravimetric, differential thermal, X-ray diffraction and elemental analysis. This melanin pigment is structurally amorphous in nature. It is thermally stable up to $300^{\circ}C$ and emits a strong exothermic peak at $700^{\circ}C$. Its carbon, hydrogen and nitrogen composition is 47.9%, 6.9% and 12.0%, respectively. It was used to scavenge metal ions and free radicals. After immobilizing the pigment and using it to adsorb copper and lead ions, the metal ion adsorption capacity was evaluated by atomic absorption spectroscopy (AAS) and the identity of melanin functional groups involved in the binding of metal ions was determined by Fourier transform infrared (FT-IR) spectroscopy. Batch adsorption studies showed that 169 mg/g of copper and 280 mg/g of lead were adsorbed onto melanin-alginate beads. The metal ion adsorption capacity of the melanin-alginate beads was relatively significant compared to alginate beads. The metal ion desorption capacity of HCl was greater (81.5% and 99% for copper and lead, respectively) than that of EDTA (80% and 71% for copper and lead, respectively). The ability of the melanin pigment to scavenge free radicals was evaluated by inhibition of the oxidation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and was shown to be about 74% and 98%, respectively, compared with standard antioxidants.

Keywords

References

  1. Albuquerque, J. E., C. Giacomantonio, A. G. White, and P.Meredith. 2006. Study of optical properties of electropolymerized melanin films by photopyroelectric spectroscopy Eur. Biophys. J. 35: 190-195. https://doi.org/10.1007/s00249-005-0020-z
  2. Averyanov, A. A., V. P. Lapikova, G. G. Petelina, and V. G. Dzhavakhiya. 1986. Prevention by fungal melanins of photodynamic spore damage. Izv. Akad. Nauk SSSR 4: 541-549.
  3. Baig, T. H., A. E. Garcia, K. J. Tiemann, and Gardea-Torresdey. 1999. Adsorption of heavy metal ions by the biomass of Solanum elaeagnifolium (Silver leaf night-shade). Proceedings of the 1999 Conference on Hazardous Waste Research.
  4. Baraldi, P., R. Capelletti, P. R. Crippa, and N. Romeo. 1979. Electrical characteristics and electret behavior of melanine. J. Electrochem. Soc. 126: 1207-1212. https://doi.org/10.1149/1.2129244
  5. Bridelli, M. G. 1998. Self-assembly of melanin studied by laser light scattering. Biophys. Chem. 73: 227-239. https://doi.org/10.1016/S0301-4622(98)00148-3
  6. Byrnes, B. J., R. L. Ryan, and M. Pazirandeh. 1997. Comparison of ion-exchange resins and biosorbents for the removal of heavy metals from plating factory wastewater. Environ. Sci. Technol. 31: 2910-2914. https://doi.org/10.1021/es970104i
  7. Casadevall, A., A. Nakouzi, P. R. Crippa, and M. Eisner. 2012. Fungal melanins differ in planar stacking distances. PLoS ONE 7: e30299. https://doi.org/10.1371/journal.pone.0030299
  8. Deziderio, S. N., C. A. Brunello, M. I. N. Da Silva, M. A. Cotta, and C. F. O. Graeff. 2004. Thin films of synthetic melanin. J. Non-Crystal. Sol. 338-340: 634-638.
  9. Fourest, E. and B. Volesky. 1997. Alginate properties and heavy metal biosorption by marine algae. Appl. Biochem. Biotechnol. 67: 215-226. https://doi.org/10.1007/BF02788799
  10. Gomes, R. C., A. S. Mangrich, R. R. R. Coelho, and L. F. Linhares. 1996. Elemental, functional group and infrared spectroscopic analysis of actinomycete melanins from Brazilian soils. Biol. Fertil. Soils 21: 84-88. https://doi.org/10.1007/BF00335997
  11. Gómez-Marín, A. M. and I. S. Carlos. 2010. Thermal and mass spectroscopic characterization of a sulphur-containing bacterial melanin from Bacillus subtilis. J. Non-Crystal. Sol. 356: 1576-1580. https://doi.org/10.1016/j.jnoncrysol.2010.05.054
  12. Hong, L. and J. D. Simon. 2006. Insight into the binding of divalent cations to Sepia eumelanin from IR absorption spectroscopy. Photochem. Photobiol. 82: 1265-1269. https://doi.org/10.1562/2006-02-23-RA-809
  13. Howell, R. C., A. D. Schweitzer, A. Casadevall, and E. A. Dadachova. 2008. Chemosorption of radiometals of interest to nuclear medicine by synthetic melanins. Nucl. Med. Biol. 35: 353-357. https://doi.org/10.1016/j.nucmedbio.2007.12.006
  14. Inglezakis, V. J., M. D. Loizidou, and H. P. Grigoropoulou. 2003. Ion exchange of $Pb^{2+}$, $Cu^{2+}$, $Fe^{3+}$, and $Cr^{3+}$ on natural clinoptilolite: selectivity determination and influence of acidity on metal uptake. J. Colloid Interface Sci. 261: 49-54. https://doi.org/10.1016/S0021-9797(02)00244-8
  15. Ito, S. and K. Fujita. 1985. Microanalysis of eumelanin and pheomelanin in hair and melanomas by chemical degradation and liquid chromatography. Anal. Biochem. 144: 527-536. https://doi.org/10.1016/0003-2697(85)90150-2
  16. Koroleva, O. V., N. A. Kulikova, T. N. Alekseva, E. V. Stepanova, V. N. Davidchik, E. Y. Beliaeva, and E. A. Tsvetkova. 2007. A comparative characterization of fungal melanin and the huminlike substances synthesized by Cerrena maxima 0275. Appl. Biochem. Microbiol. 43: 61-67. https://doi.org/10.1134/S0003683807010115
  17. Kurchenko, V. P., K. A. Mosse, and A. T. Pikulev. 1991. Abstracts of Papers, Vsesoyuznaya konferentsiya po radiobiologicheskim issledvoaniyam avarii na Cherno-byl'skoi AES, (All-Union Conf. on Radiobiological Studies of the Chernobyl Power Plant Accident). Minsk: Naukai Tekhnika. pp. 70-71.
  18. Lin, S. H. and R. S. Juang. 2002. Heavy metal removal from water by sorption using surfactant-modified montmorillonite. J. Hazard. Mater. B 92: 315-326. https://doi.org/10.1016/S0304-3894(02)00026-2
  19. Liu, Y., L. Hong, V. R. Kempf, K. Wakamatsu, S. Ito, and J. D. Simon. 2004. Ion exchange and adsorption of Fe(III) by Sepia melanin. Pigment Cell Res. 17: 262-269. https://doi.org/10.1111/j.1600-0749.2004.00140.x
  20. Liyana-Pathiranan, C. M. and F. Shahidi. 2005. Antioxidant activity of commercial soft and hard wheat (Triticum aestivum L) as affected by gastric pH conditions. J. Agr. Food Chem. 53: 2433-2440. https://doi.org/10.1021/jf049320i
  21. Lyakh, S. P. 1981. Mikrobnyi melaninogenez i ego funktsii (Microbial Melaninogenesis: Its Function). Moscow: Nauka. pp. 224.
  22. Meredith, P. and T. Sarna. 2006. The physical and chemical properties of eumelanin. Pigment Cell Res. 19: 572-594. https://doi.org/10.1111/j.1600-0749.2006.00345.x
  23. Nies, D. H. 1999. Microbial heavy metal resistance. Appl. Microbiol. Biotechnol. 51: 730-750. https://doi.org/10.1007/s002530051457
  24. Oliveira, H. P., C. F. O. Graeff, C. A. Brunello, and E. M. Guerr. 2000. Electrochromic and conductivity properties: a comparative study between melanin-like/$V_2O_5$.$nH_2O $ and polyaniline/ $V_2O_5$.$nH_2O $ hybrid materials. J. Non-Crystal. Sol. 273: 193-197. https://doi.org/10.1016/S0022-3093(00)00129-0
  25. Plonka, P. M. and M. Grabacka. 2006. Melanin synthesis in microorganisms-biotechnological and medical aspects. Acta. Biochim. Pol. 53: 429-443.
  26. Prota, G. 1992. Melanins and Melanogenesis. San Diego: Academic. pp. 1-290.
  27. Przemyslaw, M. P. and G. Maja. 2006. Melanin synthesis in microorganisms: Biotechnological and medical aspects. Acta. Biochem. Pol. 53: 429-443.
  28. Rafika, S., T. Djilali, B. Benchreit, and B. Ali. 2009. Adsorption of heavy metals (Cd, Zn and Pb) from water using keratin powder prepared from Algerien sheep hoofs. Eur. J. Sci. Res. 35: 416-425.
  29. Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  30. Sajjan, S., G. Kulkarni, V. Yaligara, K. Lee, and T. B. Karegoudar. 2010. Purification and physiochemical characterization of melanin pigment from Klebsiella sp. GSK. J. Microbiol. Biotechnol. 20: 1513-1520. https://doi.org/10.4014/jmb.1002.02006
  31. Schaeffer, P. 1953. A black mutant of Neurospora crassa. Mode of action of the mutant allele and action of light on melanogenesis. Arch. Biochem. Biophys. 47: 359-379. https://doi.org/10.1016/0003-9861(53)90473-1
  32. Schiewer, S. and Volesky, B. 1995. Modeling of the protonmetal ion exchange in biosorption. Environ. Sci. Technol. 29:3049-3058. https://doi.org/10.1021/es00012a024
  33. Shiguo, C., X. Changhu, W. Jingfeng, F. Hui, W. Yuming, M. Qin, and W. Dongfeng. 2009. Adsorption of Pb(II) and Cd(II) by squid Ommastrephes bartrami melanin. Bioinorg. Chem. Appl. 2009: 901563.
  34. Simonovic, B., V. Vucelic, A. Hadzi-Pavlovic, K. Stepien, T. Wilczok, and D. Vucelic. 1990. Thermogravimetry and differential scanning calorimetry of natural and synthetic melanins. J. Thermal. Anal. 36: 2475-2482. https://doi.org/10.1007/BF01913644
  35. Subianto, S. 2006. Electrochemical synthesis of melanin-like polyindolequinone. Thesis presented to Queensland University of Technology.
  36. Tu, Y., Y. Sun, Y. Tian, M. Xie, and J. Chen. 2009. Physicochemical characterization and antioxidant activity of melanin from the muscles of Taihe Black-bone silky fowl (Gallus gallus domesticus Brisson). Food Chem. 114: 1345-1350. https://doi.org/10.1016/j.foodchem.2008.11.015
  37. Volesky, B. and Z. R. Holan. 1995. Biosorption of heavy metals. Biotechnol. Prog. 11: 235-250. https://doi.org/10.1021/bp00033a001
  38. Wang, M., J. Li, M. Rangarajan, Y. Shao, E. J. La Voie, T. Huang, and C. Ho. 1998. Antioxidative phenolic compounds from Sage (Salvia officinalis). J. Agr. Food Chem. 46: 4869-4873. https://doi.org/10.1021/jf980614b
  39. Wuyep, P. A., A. G. Chuma, S. Awodi, and A. J. Nok. 2007. Biosorption of Cr, Mn, Fe, Ni, Cu and Pb metals from petroleum refinery effluent by calcium alginate immobilized mycelia of Polyporus squamosus. Sci. Res. Essay 2: 217-221.
  40. Yu, L., S. Haley, J. Perret, M. Harris, J. Wilson, and M. Qian. 2002. Free radical scavenging properties of wheat extracts. J. Agr. Food Chem. 50: 1619-1624. https://doi.org/10.1021/jf010964p
  41. Zajac, G., J. M. Gallas, J. Cheng, M. Eisner, S. C. Moss, and E. Alvarado-Swaisgood. 1994. The fundamental unit of synthetic melanin: A verification by tunneling microscopy of X-ray scattering results. Biochem. Biophys. Acta. 1199: 271-278. https://doi.org/10.1016/0304-4165(94)90006-X

Cited by

  1. Binding affinity of amlodipine, atorvastatin and telmisartan drugs to purified bacterial melanin pigment: a kinetic study vol.43, pp.4, 2013, https://doi.org/10.1007/s40005-013-0071-6
  2. One-pot green synthesis of eumelanin: process optimization and its characterization vol.5, pp.59, 2013, https://doi.org/10.1039/c5ra01962a
  3. On-column enzymatic synthesis of melanin nanoparticles using cryogenic poly(AAM-co-AGE) monolith and its free radical scavenging and electro-catalytic properties vol.5, pp.106, 2015, https://doi.org/10.1039/c5ra18965a
  4. Genetic validation and spectroscopic detailing of DHN-melanin extracted from an environmental fungus vol.12, pp.None, 2017, https://doi.org/10.1016/j.bbrep.2017.08.008
  5. Synthesis of Nm-PHB (nanomelanin-polyhydroxy butyrate) nanocomposite film and its protective effect against biofilm-forming multi drug resistant Staphylococcus aureus vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-08816-y
  6. Protoprotection and Anti-inflammatory Properties of Non-cytotoxic Melanin from Marine Isolate Providencia rettgeri strain BTKKS1 vol.14, pp.4, 2013, https://doi.org/10.13005/bbra/2594
  7. Data on the characterization of non-cytotoxic pyomelanin produced by marine Pseudomonas stutzeri BTCZ10 with cosmetological importance vol.18, pp.None, 2018, https://doi.org/10.1016/j.dib.2018.04.123
  8. Physicochemical Properties and Biological Activities of Melanin Extracted from Sunflower Testae vol.24, pp.6, 2018, https://doi.org/10.3136/fstr.24.1029
  9. Food, cosmetic and biological applications of characterized DOPA-melanin from Vibrio alginolyticus strain BTKKS3 vol.61, pp.2, 2013, https://doi.org/10.1007/s13765-018-0343-y
  10. Do thermal treatments influence the ultrafast opto-thermal processes of eumelanin? vol.48, pp.2, 2013, https://doi.org/10.1007/s00249-018-1342-y
  11. From Extraction to Advanced Analytical Methods: The Challenges of Melanin Analysis vol.20, pp.16, 2013, https://doi.org/10.3390/ijms20163943
  12. Soluble melanins of the Randia echinocarpa fruit - Structural characteristics and toxicity vol.43, pp.12, 2019, https://doi.org/10.1111/jfbc.13077
  13. Characterization of a nontoxic pyomelanin pigment produced by the yeast Yarrowia lipolytica vol.36, pp.2, 2013, https://doi.org/10.1002/btpr.2912
  14. Bioproduction, structure elucidation and in vitro antiproliferative effect of eumelanin pigment from Streptomyces parvus BSB49 vol.202, pp.9, 2013, https://doi.org/10.1007/s00203-020-01956-2
  15. Natural Pigments of Bacterial Origin and Their Possible Biomedical Applications vol.9, pp.4, 2013, https://doi.org/10.3390/microorganisms9040739