DOI QR코드

DOI QR Code

20S-dihydroprotopanaxatriol modulates functional activation of monocytes and macrophages

  • Kim, Mi-Yeon (School of Systems Biological Science, Soongsil University) ;
  • Cho, Jae Youl (Department of Genetic Engineering, Sungkyunkwan University)
  • Received : 2013.02.01
  • Accepted : 2013.03.18
  • Published : 2013.07.15

Abstract

20S-dihydroprotopanaxatriol (2H-PPT) is a derivative of protopanaxatrol from ginseng. Unlike other components from Panax ginseng, the pharmacological activity of this compound has not been fully elucidated. In this study, we investigated the modulatory activity of 2H-PPT on the cellular responses of monocytes and macrophages to understand its immunoregulatory actions. 2H-PPT strongly upregulated the release of radicals in sodium nitroprusside-treated RAW264.7 cells and the surface levels of costimulatory molecule CD86. More importantly, this compound remarkably suppressed nitric oxide production, morphological changes, phagocytic uptake, cell-cell aggregation, and cell-matrix adhesion in RAW264.7 and U937 cells in the presence or absence of lipopolysaccharide, anti-CD43 antibody, fibronectin, and phorbal 12-myristate 13-acetate. Therefore, our results suggest that 2H-PPT can be applied as a novel functional immunoregulator of macrophages and monocytes.

Keywords

References

  1. Lee YG, Lee J, Byeon SE, Yoo DS, Kim MH, Lee SY, Cho JY. Functional role of Akt in macrophage-mediated innate immunity. Front Biosci 2011;16:517-530. https://doi.org/10.2741/3702
  2. Yu T, Yi YS, Yang Y, Oh J, Jeong D, Cho JY. The pivotal role of TBK1 in inflammatory responses mediated by macrophages. Mediators Inflamm 2012;2012:979105.
  3. Byeon SE, Yi YS, Oh J, Yoo BC, Hong S, Cho JY. The role of Src kinase in macrophage-mediated inflammatory responses. Mediators Inflamm 2012;2012:512926.
  4. Jeannin P, Duluc D, Delneste Y. IL-6 and leukemia-inhibitory factor are involved in the generation of tumor-associated macrophage: regulation by IFN-gamma. Immunotherapy 2011;3(4 Suppl):23-26.
  5. Hasani-Ranjbar S, Nayebi N, Larijani B, Abdollahi M. A systematic review of the efficacy and safety of herbal medicines used in the treatment of obesity. World J Gastroenterol 2009;15:3073-3085. https://doi.org/10.3748/wjg.15.3073
  6. Kim DH. Chemical diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng. J Ginseng Res 2012;36:1-15. https://doi.org/10.5142/jgr.2012.36.1.1
  7. Hasegawa H. Proof of the mysterious efficacy of ginseng: basic and clinical trials: metabolic activation of ginsenoside: deglycosylation by intestinal bacteria and esterification with fatty acid. J Pharmacol Sci 2004;95:153-157. https://doi.org/10.1254/jphs.FMJ04001X4
  8. Byeon SE, Lee J, Kim JH, Yang WS, Kwak YS, Kim SY, Choung ES, Rhee MH, Cho JY. Molecular mechanism of macrophage activation by red ginseng acidic polysaccharide from Korean red ginseng. Mediators Inflamm 2012;2012:732860.
  9. Kwak YS, Kyung JS, Kim JS, Cho JY, Rhee MH. Anti-hyperlipidemic effects of red ginseng acidic polysaccharide from Korean red ginseng. Biol Pharm Bull 2010;33:468-472. https://doi.org/10.1248/bpb.33.468
  10. Lee BH, Choi SH, Shin TJ, Hwang SH, Kang JY, Kim HJ, Kim BJ, Nah SY. Effects of ginsenoside metabolites on GABAA receptor-mediated ion currents. J Ginseng Res 2012;36:55-60. https://doi.org/10.5142/jgr.2012.36.1.55
  11. Choo MK, Sakurai H, Kim DH, Saiki I. A ginseng saponin metabolite suppresses tumor necrosis factor-alpha-promoted metastasis by suppressing nuclear factor-kappaB signaling in murine colon cancer cells. Oncol Rep 2008;19:595-600.
  12. Kim YS, Yoo MH, Lee GW, Choi JG, Kim KR, Oh DK. Ginsenoside F1 production from ginsenoside Rg1 by a purified $\beta$-glucosidase from Fusarium moniliforme var. subglutinans. Biotechnol Lett 2011;33:2457-2461. https://doi.org/10.1007/s10529-011-0719-0
  13. Cho JY, Kim AR, Joo HG, Kim BH, Rhee MH, Yoo ES, Katz DR, Chain BM, Jung JH. Cynaropicrin, a sesquiterpene lactone, as a new strong regulator of CD29 and CD98 functions. Biochem Biophys Res Commun 2004;313:954-961. https://doi.org/10.1016/j.bbrc.2003.12.026
  14. Kim BH, Lee YG, Lee J, Lee JY, Cho JY. Regulatory effect of cinnamaldehyde on monocyte/macrophage-mediated inflammatory responses. Mediators Inflamm 2010;2010:529359.
  15. Cho JY, Fox DA, Horejsi V, Sagawa K, Skubitz KM, Katz DR, Chain B. The functional interactions between CD98, beta1-integrins, and CD147 in the induction of U937 homotypic aggregation. Blood 2001;98:374-382. https://doi.org/10.1182/blood.V98.2.374
  16. Lee YG, Lee WM, Kim JY, Lee JY, Lee IK, Yun BS, Rhee MH, Cho JY. Src kinase-targeted anti-inflammatory activity of davallialactone from Inonotus xeranticus in lipopolysaccharide-activated RAW264.7 cells. Br J Pharmacol 2008;154:852-863.
  17. Lee YG, Lee J, Cho JY. Cell-permeable ceramides act as novel regulators of U937 cell-cell adhesion mediated by CD29, CD98, and CD147. Immunobiology 2010;215:294-303. https://doi.org/10.1016/j.imbio.2009.05.009
  18. Kang TJ, Moon JS, Lee S, Yim D. Polyacetylene compound from Cirsium japonicum var. ussuriense inhibits the LPS-induced inflammatory reaction via suppression of NF-kappaB activity in RAW 264.7 cells. Biomol Ther 2011;19:97-101. https://doi.org/10.4062/biomolther.2011.19.1.097
  19. Jang SA, Kang SC, Sohn EH. Phagocytic effects of beta-glucans from the mushroom Coriolus versicolor are related to dectin-1, NOS, TNF-alpha signaling in macrophages. Biomol Ther 2011;19:438-444. https://doi.org/10.4062/biomolther.2011.19.4.438
  20. Cho JY, Skubitz KM, Katz DR, Chain BM. CD98-dependent homotypic aggregation is associated with translocation of protein kinase Cdelta and activation of mitogen-activated protein kinases. Exp Cell Res 2003;286:1-11. https://doi.org/10.1016/S0014-4827(03)00106-X
  21. Larrucea S, Gonzalez-Rubio C, Cambronero R, Ballou B, Bonay P, Lopez-Granados E, Bouvet P, Fontan G, Fresno M, Lopez-Trascasa M. Cellular adhesion mediated by factor J, a complement inhibitor. Evidence for nucleolin involvement. J Biol Chem 1998;273:31718-31725. https://doi.org/10.1074/jbc.273.48.31718
  22. Lee YG, Byeon SE, Kim JY, Lee JY, Rhee MH, Hong S, Wu JC, Lee HS, Kim MJ, Cho DH et al. Immunomodulatory effect of Hibiscus cannabinus extract on macrophage functions. J Ethnopharmacol 2007;113:62-71. https://doi.org/10.1016/j.jep.2007.04.019
  23. Kim BH, Lee YG, Park TY, Kim HB, Rhee MH, Cho JY. Ginsenoside Rp1, a ginsenoside derivative, blockslipopolysaccharide-induced interleukin-1beta production via suppression of the NF-kappaB pathway. Planta Med 2009;75:321-326. https://doi.org/10.1055/s-0028-1112218
  24. Bi WY, Fu BD, Shen HQ, Wei Q, Zhang C, Song Z, Qin QQ, Li HP, Lv S, Wu SC et al. Sulfated derivative of 20(S)-ginsenoside Rh2 inhibits inflammatory cytokines through MAPKs and NF-kappa B pathways in LPS-induced RAW264.7 macrophages. Inflammation 2012;35:1659-1668. https://doi.org/10.1007/s10753-012-9482-1
  25. Mork T, Hancock RE. Mechanisms of nonopsonic phagocytosis of Pseudomonas aeruginosa. Infect Immun 1993;61:3287-3293.
  26. Yamaguchi H, Haranaga S, Widen R, Friedman H, Yamamoto Y. Chlamydia pneumoniae infection induces differentiation of monocytes into macrophages. Infect Immun 2002;70:2392-2398. https://doi.org/10.1128/IAI.70.5.2392-2398.2002
  27. Kim JY, Lee YG, Kim MY, Byeon SE, Rhee MH, Park J, Katz DR, Chain BM, Cho JY. Src-mediated regulation of inflammatory responses by actin polymerization. Biochem Pharmacol 2010;79:431-443. https://doi.org/10.1016/j.bcp.2009.09.016
  28. Kustermans G, El Mjiyad N, Horion J, Jacobs N, Piette J, Legrand-Poels S. Actin cytoskeleton differentially modulates NF-kappaB-mediated IL-8 expression in myelomonocytic cells. Biochem Pharmacol 2008;76:1214-1228. https://doi.org/10.1016/j.bcp.2008.08.017
  29. Cho JY, Chain BM, Vives J, Horejsi V, Katz DR. Regulation of CD43-induced U937 homotypic aggregation. Exp Cell Res 2003;290:155-167. https://doi.org/10.1016/S0014-4827(03)00322-7
  30. Rosenstein Y, Santana A, Pedraza-Alva G. CD43, a molecule with multiple functions. Immunol Res 1999;20:89-99. https://doi.org/10.1007/BF02786465
  31. Lebel-Binay S, Lagaudriere C, Fradelizi D, Conjeaud H. CD82, tetra-span-transmembrane protein, is a regulated transducing molecule on U937 monocytic cell line. J Leukoc Biol 1995;57:956-963. https://doi.org/10.1002/jlb.57.6.956
  32. Melo RC. Acute heart inflammation: ultrastructural and functional aspects of macrophages elicited by Trypanosoma cruzi infection. J Cell Mol Med 2009;13:279-294. https://doi.org/10.1111/j.1582-4934.2008.00388.x
  33. Galli SJ, Tsai M. Mast cells: versatile regulators of inflammation, tissue remodeling, host defense and homeostasis. J Dermatol Sci 2008;49:7-19. https://doi.org/10.1016/j.jdermsci.2007.09.009
  34. Zhou T, Marx KA, Dewilde AH, McIntosh D, Braunhut SJ. Dynamic cell adhesion and viscoelastic signatures distinguish normal from malignant human mammary cells using quartz crystal microbalance. Anal Biochem 2012;421:164-171. https://doi.org/10.1016/j.ab.2011.10.052
  35. Cho JY, Katz DR, Chain BM. Staurosporine induces rapid homotypic intercellular adhesion of U937 cells via multiple kinase activation. Br J Pharmacol 2003;140:269-276. https://doi.org/10.1038/sj.bjp.0705436

Cited by

  1. Modulates the Inflammatory Responses Mediated by Monocytes and Macrophages vol.2014, pp.1466-1861, 2014, https://doi.org/10.1155/2014/405158
  2. B/AP-1-Targeted Inhibition of Macrophage-Mediated Inflammatory Responses by Depigmenting Compound AP736 Derived from Natural 1,3-Diphenylpropane Skeleton vol.2014, pp.1466-1861, 2014, https://doi.org/10.1155/2014/354843
  3. Fruit Bodies vol.2014, pp.1741-4288, 2014, https://doi.org/10.1155/2014/562467
  4. Cytochalasin B Modulates Macrophage-Mediated Inflammatory Responses vol.22, pp.4, 2014, https://doi.org/10.4062/biomolther.2014.055
  5. Methanol Extract and its Constituent Resveratrol vol.29, pp.3, 2014, https://doi.org/10.1002/ptr.5262
  6. Studies vol.19, pp.4, 2015, https://doi.org/10.4196/kjpp.2015.19.4.365
  7. Pro-Apoptotic Activity of 4-Isopropyl-2-(1-Phenylethyl) Aniline Isolated from Cordyceps bassiana vol.23, pp.4, 2015, https://doi.org/10.4062/biomolther.2015.021
  8. 4-(Tert-butyl)-2,6-bis(1-phenylethyl)phenol induces pro-apoptotic activity vol.20, pp.3, 2016, https://doi.org/10.4196/kjpp.2016.20.3.253
  9. Anti-Proliferative and Pro-Apoptotic Activities of 4-Methyl-2,6-bis(1-phenylethyl)phenol in Cancer Cells vol.24, pp.4, 2016, https://doi.org/10.4062/biomolther.2015.166
  10. Antiproliferative and Apoptosis-Inducing Activities of 4-Isopropyl-2,6-bis(1-phenylethyl)phenol Isolated from Butanol Fraction of Cordyceps bassiana vol.2015, pp.None, 2013, https://doi.org/10.1155/2015/739874
  11. The Dietary Flavonoid Kaempferol Mediates Anti-Inflammatory Responses via the Src, Syk, IRAK1, and IRAK4 Molecular Targets vol.2015, pp.None, 2013, https://doi.org/10.1155/2015/904142
  12. A direct protein kinase B-targeted anti-inflammatory activity of cordycepin from artificially cultured fruit body of Cordyceps militaris vol.11, pp.43, 2013, https://doi.org/10.4103/0973-1296.160454
  13. MAPK/AP-1-Targeted Anti-Inflammatory Activities of Xanthium strumarium vol.44, pp.6, 2013, https://doi.org/10.1142/s0192415x16500622
  14. Anti-Inflammatory Activity of Bee Venom in BV2 Microglial Cells: Mediation of MyD88-Dependent NF- κ B Signaling Pathway vol.2016, pp.None, 2013, https://doi.org/10.1155/2016/3704764