DOI QR코드

DOI QR Code

Consideration of Bentonite Cake Existing on Vertical Cutoff Wall in Slug Test Analysis

벤토나이트 케익을 고려한 연직차수벽의 순간변위시험(slug test) 해석

  • Lim, Jeehee (School of Civil Engrg., Purdue Univ.) ;
  • Nguyen, The-Bao (GS E&C) ;
  • Lee, Dongseop (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Ahn, Jaeyoon (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Choi, Hangseok (School of Civil, Environmental and Architectural Engrg., Korea Univ.)
  • Received : 2012.11.14
  • Accepted : 2013.06.18
  • Published : 2013.06.30

Abstract

Slug tests can be adopted to estimate hydraulic conductivity of the slurry trench wall backfill for its abilities to reflect the in-situ performance of the construction. A comprehensive three-dimensional numerical model is developed to simulate the slug test in a slurry trench wall considering the presence of bentonite cake on the interface boundaries between the wall and the surrounding soil formation. Influential factors such as wall width (i.e., proximity of wall boundary), well deviation, vertical position of well intake section, compressibility of wall backfill, etc. are taken into account in the model. A series of simulation results are examined to evaluate the bentonite cake effect in analyzing practical slug test results in the slurry trench wall. The results show that the modified line-fitting method can be used without any correction factor for the slug test in the slurry trench wall with the presence of bentonite cake. A case study is reanalyzed with the assumption of existing bentonite cake. The results are compared with the previously reported results by the approaches assuming no bentonite cake (constant-head boundary) or upper-bound solution (no-flux boundary). The case study demonstrates the bentonite cake effect and the validity of the modified line-fitting method in the estimation of the hydraulic conductivity of the slurry wall backfill.

순간변위시험(slug test)은 현장의 지반 상태를 반영할 수 있어 연직차수벽 뒷채움재의 투수계수를 결정하는데 적용할 수 있다. 본 논문에서는 연직차수벽과 주변 지반 사이에 형성되는 벤토나이트 케익을 고려하여 순간변위시험을 모사할 수 있는 3차원 모델이 개발되었다. 연직차수벽의 폭(즉, 경계 조건과의 근접 정도), 우물의 편심, 우물에 지하수가 유입되는 수직 위치, 뒷채움재의 압축성 등의 영향변수들이 모델에 고려되었다. 수치해석 결과를 이용하여 연직차수벽 시공 중에 존재할 수 있는 벤토나이트 케익이 순간변위시험 결과에 미치는 영향을 평가하였다. 이를 통해, 수정 Line-fitting법은 벤토나이트 케익을 고려한 연직차수벽의 순간변위시험 해석에서 다른 경계조건에 대해 제시된 보정계수 없이 직접 적용될 수 있음을 밝혔다. 본 논문에서는 기존의 현장 사례를 벤토나이트 케익을 고려하여 재분석하여 벤토나이트 케익이 존재하지 않는 경우(일정 수두 경계 조건)와 보수적인 경계조건(불투수 경계 조건)으로 가정했던 기존의 사례분석 결과들과 비교하였다. 결론적으로 연직차수벽 뒷채움재의 투수계수 평가시 벤토나이트 케익의 영향 및 수정 Line-fitting법의 유효성을 확인하였다.

Keywords

References

  1. Anderson, M. and W. Woessner (1992), Applied ground water modeling: Simulation off low and advective transport, Academic Press Inc., SanDiego, Calif.
  2. Bouwer, H. and R. C. Rice (1976), "A slug test for determining hydraulic conductivity of unconfined aquifer with completely or partially penetrating wells", Water Resource Research, 12(3), 423-428. https://doi.org/10.1029/WR012i003p00423
  3. Bradbury, K. R. and M.A. Muldoon (1990), "Hydraulic conductivity determinations in unlithified glacial and fluvial materials", Ground Water and Vadose Zone Monitoring, ASTM, STP No. 1053, edited by D. M. Nielsen and A. I. Johnsen, pp.138-151, ASTM, Philadelphia, Penn.
  4. Brigham Young University (1994), GMS, version 3.1, Provo, Utah.
  5. Britton, J. P. (2001), Soil-bentonite slurry trench walls: hydraulic conductivity and contaminant transport, Ph.D. diss., Virginia Polytechnic Institute & State University, Blacksburg, Virginia.
  6. Britton, J. P., G. M. Filz, and J. C. Little (2002), "Shape factors for single-well tests in soil-bentonite cutoff walls", Proceeding of 4th International Congresson Environmental Geotechnics, edited by deMello and Almeida, pp.639-644, Balkema Publishers, Rio de Janeiro, Brazil.
  7. Britton, J. P., G. M. Filz, and W. E. Herring (2004), "Measuring the hydraulic conductivity of soil-bentonite backfill", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 130(12), 1250-1258. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:12(1250)
  8. Britton, J. P., G. M. Filz, and W. E. Herring (2005), "Slug tests in soil-bentonite slurry trench walls using a push-in piezometer tip", Waste Containment and Remediation, ASCE, GSP No. 142 (CD-ROM), edited by J. C. Evans, ASCE, Reston, Virginia.
  9. Bruner, D. G. and A. J. Lutenegger (1994), "Measurement of saturated hydraulic conductivity in fine-grained glacial tills in Iowa: Comparison of in situ and laboratory methods", Hydraulic Conductivity and Waste Contaminant Transport in Soil, ASTM, STP No. 1142, edited by D. E. Daniel and S. J. Trautwein, pp. 255-265, ASTM, Philadelphia.
  10. Butler, J. J. (1996), "Slug tests in situ characterization: Some practical consideration", Environmental Geosciences, 3(2), 154-163.
  11. Choi, H. (2002), Analysis of slug tests to determine hydraulic conductivity of vertical slurry trench walls, Ph.D. diss., University of Illinois, Urbana-Champaign, Illinois.
  12. Choi, H. (2007), "Numerical model for analyzing slug tests in vertical cutoff walls", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 133(10), 1249-1258. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:10(1249)
  13. Choi, H. and D. E. Daniel (2006a), "Slug test analysis in vertical cutoff walls. I: Analysis Methods", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 132(4), 429-438. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:4(429)
  14. Choi, H. and D. E. Daniel (2006b), "Slug test analysis in vertical cutoff walls. II: Applications", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 132(4), 439-447. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:4(439)
  15. Choi, H., T.-B. Nguyen, and C. Lee (2008), "Slug test analysis to evaluate permeability of compressible materials", GroundWater, 46(4), 647-652. https://doi.org/10.1111/j.1745-6584.2008.00453.x
  16. Chung, J. and D. E. Daniel (2008), "Modified fluid loss test as an improved measure of hydraulic conductivity for bentonite", Geotechnical Testing Journal, ASTM, 31(3), 243-251.
  17. Cooper, H.H., J.D. Bredehoeft, and I.S. Papadopulos (1967), "Response of a finite-diameter well to an instantaneous charge of water", Water Resource Research, 3(1), 263-269. https://doi.org/10.1029/WR003i001p00263
  18. Daniel, D. E. and H. Choi (1999), "Hydraulic conductivity evaluation of vertical barrier walls", Geo-engineering for under ground facilities, ASCE, GSP No. 90, edited by G. Fernandez and R. A. Bauer, pp. 140-161, ASCE, Reston, Virginia.
  19. D'Appolonia, D. J (1980), "Soil-bentonite slurry trench cutoffs", Journal of Geotechnical Engineering, ASCE, 106(4), 399-417.
  20. EMCON (1995), West Contra Costa Sanitary Landfill, Richmond, California.
  21. Filz, G. M., R. D. Boyer, and R. R. Davidson (1997), "Bentonite-water slurry rheology and slurry trench wall trench stability", In Situ Remediation of the Geoenvironment, ASCE, GSP No. 71, edited by J. C. Evans, pp.139-153, ASCE, Reston, Virginia.
  22. Filz, G.M., L.B. Henry, G.M. Heslin, and R.R. Davidson (2001), "Determining hydraulic conductivity of soil-bentonite using the API filter press", Geotechnical Testing Journal, ASTM, 24(1), 61-71. https://doi.org/10.1520/GTJ11282J
  23. Freeze, R.A. and J.A. Cherry (1979), Groundwater, Prentice-HallInc., New Jersey.
  24. Henry, L. B., G. M. Filz, and R. R. Davidson (1998), "Formation and properties of bentonite filter cakes", Filtration and Drainage in Geotechnical/Geoenvironmental Engineering, ASCE, GSP No.78, edited by L. N. Reddi and M. V. S. Bonalo, pp.69-88, ASCE, Reston, Virginia.
  25. Herzog, B. L. and W. J. Morse (1986), "Hydraulic conductivity at a hazardous waste disposal site: Comparison of laboratory and field-determined values", Waste Management & Research, 4(2), 177-187. https://doi.org/10.1177/0734242X8600400118
  26. Hvorslev, M. J. (1951), "Time lag and soil permeability in ground water observation", Bulletin No. 36, Water ways Experiment Station, U. S. Army Corps of Engineering, Vicksburg, Mississippi.
  27. Khoury, M. A., P. H. Fayad, and R. S. Ladd (1992), "Design, construction and performance of a soil-bentonite cutoff wall constructed in two stages", Slurry wall: Design, construction, and quality control, ASTM, STP No.1129, edited by D. B. Paul et al., pp.289-308, ASTM, Philadelphia.
  28. Lee, H. W. and P. W. Chang (2007), "Correlation between the laboratory and in-situ permeability for the embankments", Journal of Civil Engineering, KSCE, 11(1), 1-5. https://doi.org/10.1007/BF02823366
  29. Nash, K. L. (1974), "Stability of trenches filled with fluids", Journal of the Construction Division, ASCE, 100(CO4), 533-542.
  30. Nguyen, T.-B. (2011), Performance of soil-bentonite slurry walls: Flow rates and contaminant containment, Ph.D. diss., Korea University, Seoul, Republic of Korea.
  31. Nguyen, T.-B., C. Lee, and H. Choi (2010a), "Estimation of hydraulic conductivity of bentonite filter cake in laboratory", Proceeding of 6th International Congresson Environmental Geotechnics, edited by M. Datta et al., pp.1393-1396, McGraw-Hill, New Delhi, India.
  32. Nguyen, T.-B., C. Lee, S. Kim, and H. Choi (2010b), "Modification of the Bouwer and Rice method to a cutoff wall with a filter cake", GroundWater, 48(6), 898-902. https://doi.org/10.1111/j.1745-6584.2010.00721.x
  33. Nguyen, T.-B., C. Lee, and H. Choi (2011), "Slug test analysis in vertical cutoff walls with consideration of filter cake", Journal of Geotechnical and Geoenvironemntal Engineering, ASCE, 137(8), 785-797. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000484
  34. Soroush, A. and M. Soroush (2005), "Parameters affecting the thickness of bentonite cake in cutoff wall construction: case study and physical modeling", Canadian Geotechnical Journal, 42(2), 646-654. https://doi.org/10.1139/t04-090
  35. Tallard, G. (1984), "Slurry trenches for containing hazardous wastes", Civil Engineering, ASCE, 54(2), 41-45.
  36. Teeter, R. M. and S. P. Clemence (1986), "In-place permeability measurement of slurry trench cutoff walls", Proceeding of Useof In Situ Testsin Geotechnical Engineering, ASCE, GSP No.6, edited by S. P. Clemence, pp.1049-1061, ASCE, New York.
  37. US ACE. (2010), Guide specification for construction soil-bentonite (S-B) slurry trench, U. S. Army Corps of Engineers, UFGS-02 35 27.
  38. Yang, D. S., U. Luscher, I. Kimoto, and S. Takeshima (1993), "SMW wall for seepage control in levee reconstruction", Proceeding of 3rd International Conferenceon Case Historiesin Geotechnical Engineering, edited by S. Prakash, pp.487-492, University of Missouri-Rolla, Rolla, Missouri.
  39. Xanthakos, P.P. (1979), Slurry Walls, McGraw-Hill, New York.