DOI QR코드

DOI QR Code

Volatile Fatty Acid Production from Saccharina japonica Extracts by Anaerobic Fermentation: Evaluation of Various Environmental Parameters for VFAs Productivity

혐기성 발효에 의한 다시마 추출물로부터 휘발성 유기산 제조: 휘발성 유기산 생산성에 대한 환경적 영향인자 평가

  • Choi, Jae Hyung (Department of Chemical Engineering, Pukyong National University) ;
  • Song, Min Kyung (The Institute of Cleaner Production Technology, Pukyong National University) ;
  • Chun, Byung Soo (Department of Food Science and Technology, Pukyong National University) ;
  • Lee, Chul Woo (Department of Chemical Engineering, Hanbat National University) ;
  • Woo, Hee Chul (Department of Chemical Engineering, Pukyong National University)
  • Received : 2012.12.18
  • Accepted : 2013.03.28
  • Published : 2013.06.28

Abstract

Volatile fatty acids (VFAs) production from marine brown algae, Saccharina japonica, was investigated in anaerobic dark fermentation. In order to evaluate the VFAs productivity, various experimental parameters (i.e., physicochemical pre-treatment, microorganism inoculation ratio, substrate concentration, and pH) were evaluated. According to the physicochemical pre-treatment methods, the maximum concentrations of VFAs were obtained in the order of sulfuric acid, subcritical water and subcritical water with lipid-extraction. Also, we investigated the operating parameters such as microorganism inoculation ratio (MV/M = 10 to 30), the substrate concentration (18.0 to 72.0 g/L) and pH (6.0 to 7.0) in sulfuric acid pre-treatment method. When the substrate concentrations were 18.0, 36.0, 54.0 and 72.0 g/L at $35^{\circ}C$, microorganism inoculation ratio 15, pH 7.0 for 372 hours, the maximum concentrations of VFAs were respectively 9.8, 13.9, 18.6 and 22.3 g/L. The change in VFAs concentrations was detected that acetic- and propionic acids increased according to increasing pH, while the butyric acid increased with decreasing pH. The VFAs obtained from concentration and separation process may be used as basic chemistry materials and bio-fuel, and they will expect to produce alternative energy of fossil fuel.

본 연구에서는 거대 갈조류 대표종인 다시마(Saccharina japonica)로부터 물리화학적 전처리 방법, 미생물 접종비율, 다시마 추출물의 농도 및 pH 조건에 따른 휘발성 유기산(volatile fatty acids, VFAs) 생산 가능성 확인과 생산 효율을 평가하고자 하였다. 물리화학적 전처리 방법에 따른 휘발성 유기산의 최대 농도는 황산, 아임계수, 지질 추출 후 아임계수 전처리 순으로 나타났다. 황산 전처리 방법에서 미생물 접종비율(유효용적(WV)/미생물 부피(M) = 10~30), pH (6.0~7.0) 및 다시마 추출물의 농도(18.0~72.0 g/L)의 혐기성 발효 조건에 따른 휘발성 유기산 생성 농도에 미치는 영향을 확인한 결과, 발효 온도 $35^{\circ}C$, 미생물 접종비율 15, pH 7.0, 발효시간 372시간에서 다시마 추출물의 농도가 18.0, 36.0, 54.0, 72.0 g/L일 때, 휘발성 유기산의 최대 농도가 각각 9.8, 13.9, 18.6, 22.3 g/L로 확인되었다. 생산된 휘발성 유기산의 조성은 pH가 높을수록 아세트산과 프로피온산의 생산 비율이 높았으며, pH가 낮을수록 부티르산의 비율이 높게 확인되었다. 생산된 저농도의 휘발성 유기산은 농축 및 분리공정과 연계하여 향후 기초화학 원료와 바이오연료 등으로 사용될 수 있으므로, 기존 화석연료의 대체에너지 생산에 기여할 수 있을 것으로 기대된다.

Keywords

References

  1. Klass, D. L., "Biomass for Renewable Energy and Fuels," Encyclopedia of Energy, 1, 193-212 (2004).
  2. Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marba, N., Holmer, M., Mateo, M. A., Apostolaki, E. T., Kendrick, G. A., Doete, K.-J., Mcglathery, K. J., and Serrano, O., "Seagrass Ecosystems as a Globally Significant Carbon Stock," Nature Geosci., 5, 505-509 (2012). https://doi.org/10.1038/ngeo1477
  3. Park, J. I., Woo, H. C., and Lee, J. H., "Production of Bioenergy from Marine Algae: Status and Perspectives," Korean Chem. Eng. Res., 46(5), 833-844 (2008).
  4. Roesijadi, G., Jones, S. B., Snowden-Swan, L. J., and Zhu, Y., "Macroalgae as a Biomass Feedstock: a Preliminary Analysis," US DOE, PNNL-19944, 2010.
  5. http://www.abrc.re.kr
  6. Wargacki, A. J., Leonard, E., Win, M. N., Regitsky, D. D., Santos, C. N. S., Kim, P. B., Cooper, S. R., Raisner, R. M., Herman, A., Sivitz, A. B., Lakshmanaswamy, A., Kashiyama, Y., Baker, D. and Yoshikuni, Y., "An Engineered Microbial Platform for Direct Biofuel Production from Brown Macro-algae," Science, 20, 308-313 (2012).
  7. Lee, J. Y., Li, P., Lee, J., Ryu, H. J., and Oh, K. K., "Ethanol Production from Saccharina japonica Using an Optimized Extremely Low Acid Pretreatment Followed by Simultaneous Saccharification and Fermentation," Bioresour. Technol., 127, 119-125 (2013). https://doi.org/10.1016/j.biortech.2012.09.122
  8. Lee, S.-M., and Lee, J.-H., "Organic Acid and Enzyme Pretreatment of Laminaria japonica for Bio-ethanol Production," Appl. Chem. Eng., 23(2), 164-168 (2012).
  9. Pham, T. N., Nam, W. J., Jeon, Y. J., and Yoon, H. H., "Volatile Fatty Acids Production from Marine Macroalgae by Anaerobic Fermentation," Bioresour. Technol., 124, 500-503 (2012). https://doi.org/10.1016/j.biortech.2012.08.081
  10. Chang, H. N., and Kim, N. J., "Method for Producing Bio-Chemicals Derived from Algal Biomass," Korea Patent No. 10-1039432 (2011).
  11. Woo, H. C., Chang, H. N., Jeon, Y. J., Suh, D. J., Chun, B. S., Oh, K. K., Kim, K. H., Kim, D. W., and Choi, J. H., "Method for Preparing Volatile Fatty Acids from the Pre-treated Extracts of Marine Biomass Residue," US Patent No. 13/807,587 (2012).
  12. Kim, J., Lee, Y., Jung, S., Lee, J., and Cho, M. H., "Production of Methane from Anaerobic Fermentation of Marine Macroalgae," Clean Tech., 16(1), 51-58 (2010).
  13. Lee, S.-M., Kim, G. H., and Lee, J.-H., "Bio-gas Production by Co-fermentation from the Brown Algae, Laminaria japonica," J. Ind. Eng. Chem., 18(4), 1512-1514 (2012). https://doi.org/10.1016/j.jiec.2012.02.014
  14. Shi, X., Jung, K.-W., Kim, D.-H., Ahn, Y.-T., and Shin, H.-S., "Direct Fermentation of Laminaria japonica for Biohydrogen Production by Anaerobic Mixed Cultures," Int. J. Hydrogen Energy, 36, 5857-5864 (2011). https://doi.org/10.1016/j.ijhydene.2011.01.125
  15. Wall, J. D., Harwood, C. S., and Demain, A., Bioenergy, AMS Press, Washington DC, 2008, pp. 347-360.
  16. Chan, W. N., and Holtzapple, M. T., "Conversion of Municipal Solid Wastes to Carboxylic Acids by Thermophilic Fermentation," Appl. Biochem. Biotechnol., 111(2), 93-112 (2003). https://doi.org/10.1385/ABAB:111:2:93
  17. Fu, Z., Holtzapple, and M. T., "Consolidated Bioprocessing of Sugarcane Bagasse and Chicken Manure to Ammonium Carboxylates by a Mixed Culture of Marine Microorganisms," Bioresour. Technol., 101, 2825-2836 (2010). https://doi.org/10.1016/j.biortech.2009.11.104
  18. Holtzapple, M. T., and Granda, C. B., "Carboxylate Platform: the MixAlco Process Part 1: Comparison of Three Biomass Conversion Platforms," Appl. Biochem. Biotechnol., 156, 95-106 (2009). https://doi.org/10.1007/s12010-008-8466-y
  19. Mehta, K. I., and Callihan, C. D., "Production of Protein and Fatty Acids in the Anaerobic Fermentation of Molasses by E. ruminatium," J. Am. Oil Chem. Soc., 61(11), 1728-1734 (1984). https://doi.org/10.1007/BF02582137
  20. Macarthur, R. H., and Wilson, E. O., The Theory of Island Biogeography, Princeton University Press, Princeton, NJ, 1967.
  21. Horiuchi, J. I., Shimizu, T., Tada, K., Kanno, T., and Kobayashi, M., "Selective Production of Organic Acids in Anaerobic Acid Reactor by pH Control," Bioresour. Technol., 82(3), 209-213 (2002). https://doi.org/10.1016/S0960-8524(01)00195-X

Cited by

  1. Eco-efficient recovery of bio-based volatile C2–6 fatty acids vol.12, pp.None, 2013, https://doi.org/10.1186/s13068-019-1433-8