Antioxidant Activity of Water Extract of Chrysanthemum boreale against MPTP-induced Mice Models

MPTP에 의해 유도된 생쥐의 신경독성에 대한 산국 추출물의 항산화 작용

  • 김성훈 (경희대학교 한의과대학 병리학교실) ;
  • 최종원 (경성대학교 약학대학)
  • Received : 2012.08.11
  • Accepted : 2013.01.10
  • Published : 2013.02.25

Abstract

Chrysanthemum boreale(CB) is an oriental medicinal herb which has been used traditionally for the treatment of various brain disease including headache, dizziness and sedation. In order to examine the mechanism of anti-parkinsonism effect, water extract of CB(100 mg and 200 mg/kg of b.w.) were administered orally during 28 days in MPTP-induced parkisonism mice model. Water extract of CB increased the motor activities. CB did not affect total MAO and MAO-B activity in the brain of MPTP-induced mice. CB significantly increased the concentration of lipid peroxidation in the mid brain. Also, CB significantly increased antioxidant enzyme including were SOD, catalase and glutathione peroxidase in the mid brain activity. CB significantly increased the concentration of dopamine and homovanillic acid in the brain. These results suggest that the anti-parkinsonism effect of CB is possibly due to the antioxidative effects at mid brain in MPTP-induced animal model.

Keywords

References

  1. Onofrj, M., Ghilardi, M.F., Basciani, M. Visual evoked potentials in parkinsonism and dopamine blockade reveal a stimulus-dependent dopamine function in humans. J Neurol Neurosurg Psychiatry 49: 1150-1159, 1986. https://doi.org/10.1136/jnnp.49.10.1150
  2. Hornykiewicz, O. The discovery of dopamine deficiency in the parkinsonian brain. J Neural Transmission 70(1):9-15, 2006. https://doi.org/10.1007/978-3-211-45295-0_3
  3. Langston, J.W., Irwin, I., Langston, E.B., Forno, L.S. Pargyline prevents MPTP-induced parkinsonism in primates. Science 225(4669):1460-1462, 1984. https://doi.org/10.1126/science.6433484
  4. Arai, N., Isaji, M., Kojima, M., Mizuta, E., Kuno, S. Combined effects of cabergoline and L-dopa on parkinsonism in MPTP-treated cynomolgus monkeys. J Neural Transmission 103(11):1037-1316, 1996.
  5. Lau, Y.S., Meredith, G.E. From drugs of abuse to parkinsonism: The MPTP Mouse Model of Parkinson's Disease. Methods in Molecular Medicine 79(1):103-116, 2003.
  6. Kim, J.G. Ilustrated natural drugs encyclopedia. Seoul. Namsandang 4(1):59, 1997.
  7. Danbensky, R., Andrew, G. Chinese hebral medicine. Estland Press Seattle. pp 120-137, 1986.
  8. 최영전. 한국민속식물. 서울. 아카데미서적. p 53, 1992.
  9. Nam, S.H., Yang, M.S. Isolation of cytotoxic substances from Chrysanthemum boreale M. Argricultural Chemistry and Biothechnology 38(3):273-277, 1995.
  10. Jang, D.S., Park, K.H., Yang, M.S. Germacranolides from flowers of Chrysanthemum boreale Makino. Kor J Pharmacogn 29(2):67-70, 1998.
  11. You, K., Bang, C., Lee, K., Ham, I., Choi, H.Y. Anti-inflammatory effects of Chrysanthemum boreale flower. Kor J Herbology 26(4):31-37, 2011.
  12. 한국약학대학 협의회 약물학분과회. 약물학, 독성학 실험. 서울. 신일북스. pp 113-121, 2011.
  13. Wayne, B. Effects of depleted uranium on mouse midbrain catecholamines and related behavior. Int J Environ Res Public Health 7(1):303-313, 2010. https://doi.org/10.3390/ijerph7010303
  14. Minami, M., Maruyama, W., Dostert, P., Nagatsu, T., Naoi, M. Inhibition of type A and B monoamine oxidase by 6,7-dihydroxy-1,2,3,4-tetrahydro-isoquinolines and their N-methylated derivatives. Journal of Neoral Transmision 92(2):125-135, 1993. https://doi.org/10.1007/BF01244872
  15. Welyer, W., J. I. Salach, J.I. Purification and properties of mitochondrial monoamine oxidase type from human placenta. : Biological Chemistry 260(24):13199-13207, 1985.
  16. Youdim, M.B., Weinstock, M. Therapeutic applications of selective and non-selective inhibitors of monoamine oxidase A and B that do not cause significant tyramine potentiation. Neurotoxicology 25(1-2):243-250, 2004. https://doi.org/10.1016/S0161-813X(03)00103-7
  17. Marklund, S., Marklund, G. Involvement of the superoxide anion radical in the autioxidation of pyrogallol and a convenient assay for uperoxide dismutase. : Eur J Biochem 47: 469-474, 1974 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  18. Aebi, H., vergmeyer, M.U. Catalase In Methods of enzymetic analysis. : Academic Press, New York., 2: 673-681, 1974.
  19. Paglia, E.D., Valentine, W.N. Studies on the quantitative and qualitative charaterization of erythrocytes glutathione peroxidase. . Lab Clin Med 70: 158-163, 1967.
  20. Ohkawa, H., Ohishi, N., Yaki, K. Assay for lipid peroxide in animal tissue by thiobarbituric acid reation. Anal Biochem 95(2):351-358, 1979. https://doi.org/10.1016/0003-2697(79)90738-3
  21. Kotake, C., Heffner, T., Vosmer, G., Seiden, L. Determination of dopamine, norepinephrine, serotonin and their major metabolic products in rat brain by reverse-phase ion-pair high performance liquid chromatography with electrochemical detection. Pharmacol Biochem Behav 22(1):85-89, 1985. https://doi.org/10.1016/0091-3057(85)90490-3
  22. Lowry, O. H., Rodebrough, N. J., Farr, A. L., Randall, R. J. Protein measurement with the folin phenol reagent. J Biol Chem 193: 265-275, 1951.
  23. Tanner, C.M., Langston, J.W. Do environmental toxins cause Parkinson's disease. : A criticla review. Neurology 40(10):17-30, 1990.
  24. Jankovic, J. Parkinson's disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatr 79(4):368-376, 2008. https://doi.org/10.1136/jnnp.2007.131045
  25. Widdowson, P.S., Farnworth, M.J., Upton, R., Simpson, M.G. No changes in behavior, nigro-striatal system neurochemistry or neuronal cell death following toxic multiple oral paraquat administration to rat. Human and Experomental Toxicology 15(7):583-591, 1996. https://doi.org/10.1177/096032719601500706
  26. Ferger, B., Teismann, P., Earl, C,D., Kuschinsky, K., Oertel, W.H. The propective effects of PBN against MPTP toxocity are independent of hydroxyl radical trapping. Phamaco Biochem Behav 65(3):425-431, 2000. https://doi.org/10.1016/S0091-3057(99)00229-4
  27. Westm B.D., Sheghrue, P.J., Vanko, A.E.H,, Ransorn, R.W., Kinney, G.G. Amphetamine-induced locomotor activity is reduced in mice following MPTP treatment but not following selegiline/MPTP treatment. Pharmacol. Biochm. Behav 84(1):158-161, 2006. https://doi.org/10.1016/j.pbb.2006.04.022
  28. Sun, L., Xu, S., Zhou, M., Wang, C., Wu, Y., Chan, P. Effects of cysteamine on MPTP-induced dopaminergic neurodegeneration in mice. Brain Research 1335: 74-82, 2010. https://doi.org/10.1016/j.brainres.2010.03.079
  29. Halliwell, B. Oxidative stress and neurodegeneration: where are we now. J Neurochemistry 97(6):1634-1658, 2006. https://doi.org/10.1111/j.1471-4159.2006.03907.x
  30. Gao, H., Liu, B., WANQIN ZHANG, W., Hong, J. Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson's disease. FASEB J 17(13):1954-1956, 2003. https://doi.org/10.1096/fj.03-0109fje
  31. Gutteridge, J.M.C., Halliwell, B. Invited Review Free Radicals in Disease Processes: A Compilation of Cause and Consequence 19(3):141-158, 1993. https://doi.org/10.3109/10715769309111598
  32. Burcham, P.C., Kuhan, Y.T. Introduction of carbonyl groups into proteins by the lipid peroxidation product, malondialdehyde. Biochem Biophy Res Commun 220(3):996-1001, 1996. https://doi.org/10.1006/bbrc.1996.0521
  33. Mermett, L. Lipid peroxidation-DNA damage by malondialdehyde. Mutation Res. 424(1-2):83-95, 1999. https://doi.org/10.1016/S0027-5107(99)00010-X
  34. Vozenin-Brotons, M.C., Sivan, V., Gault, N., Renard, C., Geffrotin, C., Delanian, S., Lefaix, J.L., Martin, M. Antifibrotic action of Cu/Zn SOD is mediated by TGF-beta1 repression and phenotypic reversion of myofibroblasts. Free Radic Biol Med 30(1):30-42, 2001. https://doi.org/10.1016/S0891-5849(00)00431-7
  35. Campana, F., Zervoudis, S., Perdereau, B., Gez, E., Fourquet, A., Badiu, C., Tsakiris, G., Koulaloglou, S. Topical superoxide dismutase reduces post-irradiation breast cancer fibrosis. J Cell Mol Med 8(1):109-116, 2004. https://doi.org/10.1111/j.1582-4934.2004.tb00265.x
  36. Wood, J.M,, Decker, H., Hartmann, H., Chavan, B., Rokos, H., Spencer, J.D., Hasse, S., Thornton, M.J., Shalbaf, M., Paus, R., Schallreuter, K.U. Senile hair graying: H2O2-mediated oxidative stress affects human hair color by blunting methionine sulfoxide repair. FASEB J 23(7):2065-2075, 2009. https://doi.org/10.1096/fj.08-125435
  37. Epp, O., Ladenstein, R., Wendel, A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur J Biochem 133(1):51-69, 1983. https://doi.org/10.1111/j.1432-1033.1983.tb07429.x
  38. Joh, T.H., Hwang, O. Dopamine Beta-Hydroxylase. Biochem. Mol Biol 493: 342-350, 1987.
  39. Manor, I., Tyano, S., Mel, E., Eisenberg, J., Bachner-Melman, R., Kotler, M., Ebstein, R.P. Family-Based and Association Studies of Monoamine Oxidase A and Attention Deficit Hyperactivity Disorder (ADHD). Mol Psych (6):626-632, 2002.