References
- Nisizawa K, Noda H, Kikuchi R, Watanabe T. 1987. The main seaweed foods in Japan. Hydrobiol 151/152: 5-29. https://doi.org/10.1007/BF00046102
- Sahoo D, Tang X, Yarish C. 2002. Porphyra-the economic seaweed as a new experimental system. Curr Sci 83: 1313- 1316.
- FAO. 2007. Yearbook of fishery statistics 2005. Food and Agricultural Organization, Rome, Italy. Vol 100-1/2.
- Burtin P. 2003. Nutritional value of seaweeds. Elect J Environ Agric Food Chem 2: 498-503.
- Bocanegra A, Bastida S, Benedi J, Rodenas S, Sánchez-Muniz FJ. 2009. Characteristics and nutritional and cardiovascularhealth properties of seaweeds. J Med Food 12: 236-258. https://doi.org/10.1089/jmf.2008.0151
- Galland-Irmouli AV, Fleurence J, Lamghari R, Luçon M, Rouxel C, Barbaroux O, Bronowicki JP, Villaume C, Gueant JL. 1999. Nutritional value of proteins from edible seaweed Palmaria palmata (Dulse). J Nutr Biochem 10: 353-359. https://doi.org/10.1016/S0955-2863(99)00014-5
- Sanchez-Machado DI, Lopez-Cervantes J, Lopez-Hernández J, Paseiro-Losada P. 2004. Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem 85: 439-444. https://doi.org/10.1016/j.foodchem.2003.08.001
- Dawczynski C, Schubert R, Jahreis G. 2007. Amino acids, fatty acids, and dietary fiber in edible seaweed products. Food Chem 103: 891-899. https://doi.org/10.1016/j.foodchem.2006.09.041
- Romarís-Hortas V, García-Sartal C, del Carmen Barciela- Alonso M. 2011. Bioavailability study using an in-vitro method of iodine and bromine in edible seaweed. Food Chem 124: 1747-1752. https://doi.org/10.1016/j.foodchem.2010.07.117
- Gupta S, Abu-Ghannam N. 2011. Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innov Food Sci Emerg Technol 12: 600-609. https://doi.org/10.1016/j.ifset.2011.07.004
- Ito K, Hori K. 1989. Seaweed: chemical composition and potential uses. Food Rev Int 5: 101-144. https://doi.org/10.1080/87559128909540845
- Wong KH, Cheung PCK. 2000. Nutritional evaluation of some subtropical red and green seaweeds. Part I-proximate composition, amino acid profiles and some physico-chemical properties. Food Chem 71: 475-482. https://doi.org/10.1016/S0308-8146(00)00175-8
- Ruperez P. 2002. Mineral content of edible marine seaweeds. Food Chem 79: 23-26. https://doi.org/10.1016/S0308-8146(02)00171-1
- MacArtain R, Gill CIR, Brooks M, Campbell R, Rowland IR. 2007. Nutritional value of edible seaweeds. Nutr Rev 65: 535-543. https://doi.org/10.1111/j.1753-4887.2007.tb00278.x
- Rodenas de la Rocha S, Sanchez-Muniz FJ, Gomez-Juaristi M, Marin MTL. 2009. Trace elements determination in edible seaweeds by an optimized and validated ICP-MS method. J Food Comp Anal 22: 330-336. https://doi.org/10.1016/j.jfca.2008.10.021
- Sartal CG, Barciela-Alonso MC, Bermejo-Barrenra P. 2012. Effect of the cooking procedure on the arsenic speciation in the bioavailable (dialyzable) fraction from seaweed. Microchem J 105: 65-71. https://doi.org/10.1016/j.microc.2012.08.001
- AOAC. 1995. Official methods of analysis. Association of Official Analytical Chemists, Washington, DC, USA.
- Behairy AKA, El-Sayed MM. 1983. Biochemical composition of some marine brown algae from Jeddah Coast, Saudi Arabia. Indian J Marine Sci 12: 200-201.
- Portugal TR, Ladines EO, Ardena SS, Resurreccion L, Medina CR, Matibag PM. 1983. Nutritive value of some Philippine seaweeds part II: Proximate, amino acids and vitamin composition. Philip J Nutr 78: 166-172.
- Fleurence J, Gutbier G, Mabeau S, Leray C. 1994. Fatty acids from 11 marine macroalgae of the French Brittany coast. J Appl Physiol 6: 527-532.
- Yaich H, Garna H, Besbes S, Paquot M, Blecker C, Attia H. 2011. Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chem 128: 895-901. https://doi.org/10.1016/j.foodchem.2011.03.114
- Fleurence J. 1999. Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends Food Sci Technol 10: 25-28. https://doi.org/10.1016/S0924-2244(99)00015-1
- Norziah MH, Ching CY. 2000. Nutritional composition of edible seaweed Gracilaria changgi. Food Chem 68: 69-76. https://doi.org/10.1016/S0308-8146(99)00161-2
- Denis C, Morançais M, Li M, Deniaud E, Gaudin P, Wielgosz- Collin G, Barnathan G, Jaouen P, Fleurence J. 2010. Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Britany (France). Food Chem 119: 913-917. https://doi.org/10.1016/j.foodchem.2009.07.047
- Fujiwara-Arasaki T, Mino N, Kuroda M. 1984. The protein value in human nutrition of edible marine algae in Japan. Hydrobiol 116/117: 513-516. https://doi.org/10.1007/BF00027735
- Ortiz J, Romero N, Robert P, Araya J, Lopez-Hernandez J, Bozzo C, Navarrete E, Osorio A, Rios A. 2006. Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chem 99: 98-104. https://doi.org/10.1016/j.foodchem.2005.07.027
- Mabeau S, Cavaloc E, Fleurence J, Lahaya M. 1992. New seaweed based ingredients for the food industry. Int Food Ing 3: 38-45.
- McLachlan J, Craigie JS, Chen LCM, Ogetze E. 1972. Porphyra linearis Grev: an edible species of nori from Nova Scotia. Proc Int Seaweed Symp 7: 473-476.
- Wójcik OP, Koenig KL, Zeleniuch-Jacquotte A, Costa M, Chem Y. 2010. The potential protective effects of taurine on coronary heart disease. Atherosclerosis 208: 19-25. https://doi.org/10.1016/j.atherosclerosis.2009.06.002
- Militante JD, Lombardini JB. 2002. Treatment of hypertension with oral taurine: experimental and clinical studies. Amino Acids 23: 381-393. https://doi.org/10.1007/s00726-002-0212-0
- Schaffer SW, Azuma J, Mozaffari M. 2009. Role of antioxidant activity of taurine in diabetes. Can J Physiol Pharmacol 87: 91-99. https://doi.org/10.1139/Y08-110
- Zulli A. 2010. Taurine in cardiovascular disease. Curr Opin Clin Nutr Metab Care 14: 57-69.
- Manyam BV, Katz L, Hare TA, Kaniefski K, Tremblay RD. 1981. Isoniazid-induced elevation of cerebrospinal fluid (CSF) GABA levels and effects on chorea in Huntington's disease. Ann Neurol 10: 35-37. https://doi.org/10.1002/ana.410100107
-
Siragusa S, De Angelis M, Di Cagno R, Rizzello CG, Coda R, Gobbetti M. 2007. Synthesis of
$\gamma$ -aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl Environ Microbiol 73: 7283-7290. https://doi.org/10.1128/AEM.01064-07 - Lee SM, Lewis J, Buss DH, Holcombe GD, Lawrence PR. 1994. Iodine in British foods and diets. Brit J Nutr 72: 435- https://doi.org/10.1079/BJN19940045
- Drum R. 2003. Sea Vegetables for Food and Medicine. http://www.ryandrum.com/seaxpan1.html (accessed Feb 2013).
- Misurcova L, Machu L, Orsavova J. 2011. Seaweed minerals as nutraceuticals. Adv Food Nutr Res 64: 371-390. https://doi.org/10.1016/B978-0-12-387669-0.00029-6
- Yoshie Y, Suzuki T, Shirai T, Hirano T. 1994. Changes in the contents of dietary fibers, minerals, free amino acids, and fatty acids during processing of dry Nori. Nippon Suisan Gakkaishi 60: 117-123. https://doi.org/10.2331/suisan.60.117
- Ortega-Calvo JJ, Mazuelos C, Hermosin B, Saiz-Jimenez C. 1993. Chemical composition of Spirulina and eucaryotic algae food products marketed in Spain. J Appl Physiol 5: 425-435.
- Almela C, Clemente MJ, Vélez D, Montoro R. 2006. Total arsenic, inorganic arsenic, lead and cadmium contents in edible seaweed sold in Spain. Food Chem Toxicol 44: 1901- 1908. https://doi.org/10.1016/j.fct.2006.06.011
- van Netten C, Hoption Cann SA, Morley DR, Netten JP. 2000. Elemental and radioactive analysis of commercially available seaweed. Sci Total Environ 255: 169-175. https://doi.org/10.1016/S0048-9697(00)00467-8
- Phillips DJH. 1990. Arsenic in aquatic organisms: a review, emphasizing chemical speciation. Aqu Toxicol 16: 151-186. https://doi.org/10.1016/0166-445X(90)90036-O
- Struck BD, Pelzer R, Ostapczuk P, Emons H, Mohl C. 1997. Statistical evaluation of ecosystem properties influencing the uptake of As, Cd, Co, Cu, Hg, Mn, Ni, Pb and Zn in seaweed (Fucus vesiculosus) and common mussel (Mytilus edulis). Sci Total Environ 207: 29-42. https://doi.org/10.1016/S0048-9697(97)00246-5
- Lodeiro P, Cordero B, Barriada JL, Herrero R, Sastre de Vicente ME. 2005. Biosorption of cadmium by biomass of brown marine macroalgae. Biores Technol 96: 1796-1803. https://doi.org/10.1016/j.biortech.2005.01.002
- Marinho-Soriano E, Fonseca PC, Carneiro MAA, Moreira WSC. 2006. Seasonal variation in the chemical composition of two tropical seaweeds. Biores Technol 97: 2402-2406. https://doi.org/10.1016/j.biortech.2005.10.014
Cited by
- Nutritional profiling of Pyropia acanthophora var. robusta (Bangiales, Rhodophyta) from Indian waters vol.29, pp.4, 2017, https://doi.org/10.1007/s10811-017-1096-4
- Temporal and spatial variations in the proximate composition, amino acid, and mineral content of Pyropia yezoensis vol.28, pp.6, 2016, https://doi.org/10.1007/s10811-016-0862-z
- The Analysis of Proximate Composition, Minerals and Amino Acid Content of Red Alga Pyropia dentata by Cultivation Sites vol.29, pp.1, 2013, https://doi.org/10.13047/kjee.2015.29.1.001
- 원산지별 김의 일반성분 및 무기질, 아미노산 함량 비교 vol.30, pp.1, 2013, https://doi.org/10.13047/kjee.2016.30.1.098
- Optimization of Drying Process for Squid-Laver Snack by a Combined Method of Fuzzy Synthetic and Response Surface Methodology vol.2017, pp.None, 2013, https://doi.org/10.1155/2017/9761356
- Bioactive Compounds of Edible Purple Laver Porphyra sp. (Nori) vol.65, pp.49, 2013, https://doi.org/10.1021/acs.jafc.7b04688
- Metabolome profiling of various seaweed species discriminates between brown, red, and green algae vol.249, pp.6, 2013, https://doi.org/10.1007/s00425-019-03134-1
- Green seaweeds (Ulva fasciata sp.) as nitrogen source for fungal cellulase production vol.35, pp.6, 2013, https://doi.org/10.1007/s11274-019-2658-1
- Survey for acrylamide in processed foods from Korean market and individual exposure estimation using a non-parametric probabilistic model vol.37, pp.6, 2020, https://doi.org/10.1080/19440049.2020.1746410
- 방사선 돌연변이 방사무늬김(Pyropia yezoensis)의 성분 분석과 항산화 활성 vol.53, pp.4, 2020, https://doi.org/10.5657/kfas.2020.0524