DOI QR코드

DOI QR Code

Altered Gene Expression of Inflammatory Cytokines in Adipose Tissue of Streptozotocin-induced Diabetic C57BL/6 Mice

Streptozotocin으로 당뇨가 유도된 C57BL/6 생쥐 지방조직에서의 염증성 사이토카인 유전자의 이상발현

  • Lee, Yong-Ho (Department of Biomedical Science, Catholic University of Daegu) ;
  • Kim, Jong Bong (Department of Biomedical Science, Catholic University of Daegu)
  • 이용호 (대구가톨릭대학교 자연과학대학 의생명과학과) ;
  • 김종봉 (대구가톨릭대학교 자연과학대학 의생명과학과)
  • Received : 2013.04.12
  • Accepted : 2013.06.20
  • Published : 2013.06.30

Abstract

The aim of this study was to investigate the effects of induced diabetes by streptozotocin (STZ) administration on gene expression of proinflammatory cytokines in adipose tissue of C57/BL6 mice fed either a normal diet (ND) or a high-fat diet (HFD). Four diabetic mice groups (16- or 26-week-old mice fed either ND or HFD) and four control groups of age and diet matched non-diabetic mice were used. By real-time PCR, gene expression levels of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and monocyte chemoattractant protein-1 (MCP-1) were examined in adipose tissue. The results demonstrated that gene expression of TNF-${\alpha}$ was significantly or marginally increased in STZ induced diabetic mice groups compared with non-diabetic groups. On the other hand, MCP-1 gene expression tended to be decreased in diabetic mice compared with non-diabetic controls. Especially, MCP-1 expression level in 16w diabetic mice on HFD was about 26% of that in age and diet matched non-diabetic controls (p<0.001). In addition, MCP-1 gene expression in adipose tissue was correlated with plasma insulin levels (p=0.0002). These results suggest that gene expression of proinflammatory cytokines in adipose tissue is differentially regulated in mouse models of diabetes. The basic data in this study will be useful for elucidating basic mechanisms of inflammatory state and increased expression of proinflammatory cytokines in adipose tissue in obesity, insulin resistance, and diabetes.

본 연구를 통하여 streptozotocin 주사에 의한 당뇨 유발이 일반식이와 고지방식이로 키운 C57BL/6 수컷생쥐의 지방조직에서의 염증성 사이토카인 유전자 발현에 미치는 영향을 조사하였다. 네 그룹의 당뇨생쥐(일반식이 또는 고지방식이로 키운 16주령 또는 26주령 생쥐)와 네 그룹의 비당뇨 대조군을 포함한 모두 73마리의 생쥐가 이 실험에 사용되었다. Real-time PCR을 이용하여 지방조직에서의 tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)와 monocyte chemoattractant protein-1 (MCP-1)의 유전자 발현량을 측정한 결과, TNF-${\alpha}$ mRNA는 당뇨 유발에 의해 증가하는 양상을 보였다. 특히, 16주령의 일반식이 생쥐의 경우 비당뇨 대조군에 비해 당뇨가 유발된 실험군에서 유의한 증가가 관찰되었다. MCP-1 mRNA 발현은 STZ처리에 따른 당뇨유발에 의해 감소하는 경향을 나타내었다. 특히, 16주령 고지방식이의 당뇨 실험군에서의 발현이 비당뇨 대조군에서의 발현량의 26%에 해당할 정도로 큰 감소를 나타내었다. 또한, MCP-1의 발현은 인슐린 농도와 유의한 상관관계가 있음이 확인되었다. 이들 실험결과는 당뇨 모델 생쥐에서 지방조직의 염증성 사이토카인이 이상발현되고 있음을 나타내며, 비만, 인슐린저항성, 및 당뇨에서의 저준위 염증상태와 지방조직에서의 염증성 사이토카인 발현 조절의 기작을 밝히는데 유용한 정보를 제공할 것으로 기대된다.

Keywords

References

  1. American Diabetes Association. 2007. Diagnosis and classification of diabetes mellitus. Diabetes Care 30, S42-S47. https://doi.org/10.2337/dc07-S042
  2. Bruun, J. M., Lihn, A. S., Pedersen, S. B. and Richelsen, B. 2005. Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT. J Clin Endocrinol Metab 90, 2282-2289. https://doi.org/10.1210/jc.2004-1696
  3. Hotamisligil, G. S., Shargill, N. S. and Spiegelman, B. M. 1993. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87-91. https://doi.org/10.1126/science.7678183
  4. Hotamisligil, G. S. and Spiegelman, B. M. 1994. Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes 43, 1271-1278. https://doi.org/10.2337/diabetes.43.11.1271
  5. Jain, S. K., Kannan, K., Lim, G., Matthews-Greer, J., McVie, R. and Bocchini, J. A., Jr. 2003. Elevated blood interleukin-6 levels in hyperketonemic type 1 diabetic patients and secretion by acetoacetate-treated cultured U937 monocytes. Diabetes Care 26, 2139-2143. https://doi.org/10.2337/diacare.26.7.2139
  6. Jain, S. K., Kannan, K., Lim, G., McVie, R. and Bocchini, J. A., Jr. 2002. Hyperketonemia increases tumor necrosis factor-alpha secretion in cultured U937 monocytes and Type 1 diabetic patients and is apparently mediated by oxidative stress and cAMP deficiency. Diabetes 51, 2287-2293. https://doi.org/10.2337/diabetes.51.7.2287
  7. Jiang, H., Zhu, H., Chen, X., Peng, Y., Wang, J., Liu, F., Shi, S., Fu, B., Lu, Y., Hong, Q., Feng, Z., Hou, K., Sun, X., Cai, G., Zhang, X. and Xie, Y. 2007. TIMP-1 transgenic mice recover from diabetes induced by multiple low-dose streptozotocin. Diabetes 56, 49-56. https://doi.org/10.2337/db06-0710
  8. Kahn, S. E., Hull, R. L. and Utzschneider, K. M. 2006. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840-846. https://doi.org/10.1038/nature05482
  9. Kern, P. A., Ranganathan, S., Li, C., Wood, L. and Ranganathan, G. 2001. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 280, E745-751.
  10. Kershaw, E. E. and Flier, J. S. 2004. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89, 2548-2556. https://doi.org/10.1210/jc.2004-0395
  11. Kusakabe, T., Tanioka, H., Ebihara, K., Hirata, M., Miyamoto, L., Miyanaga, F., Hige, H., Aotani, D., Fujisawa, T., Masuzaki, H., Hosoda, K. and Nakao, K. 2009. Beneficial effects of leptin on glycaemic and lipid control in a mouse model of type 2 diabetes with increased adiposity induced by streptozotocin and a high-fat diet. Diabetologia 52, 675-683. https://doi.org/10.1007/s00125-009-1258-2
  12. Lee, Y. H., Martin, J. M., Maple, R. L., Tharp, W. G. and Pratley, R. E. 2009. Plasma amyloid-beta peptide levels correlate with adipocyte amyloid precursor protein gene expression in obese individuals. Neuroendocrinology 90, 383-390. https://doi.org/10.1159/000235555
  13. Lee, Y. H., Nair, S., Rousseau, E., Allison, D. B., Page, G. P., Tataranni, P. A., Bogardus, C. and Permana, P. A. 2005. Microarray profiling of isolated abdominal subcutaneous adipocytes from obese vs non-obese Pima Indians: increased expression of inflammation-related genes. Diabetologia 48, 1776-1783. https://doi.org/10.1007/s00125-005-1867-3
  14. Lee, Y. H. and Pratley, R. E. 2007. Abdominal obesity and cardiovascular disease risk: the emerging role of the adipocyte. J Cardiopulm Rehabil 27, 2-10. https://doi.org/10.1097/01.HCR.0000265014.36587.dd
  15. Lee, Y. H. and Pratley, R. E. 2005. The evolving role of inflammation in obesity and the metabolic syndrome. Curr Diab Rep 5, 70-75. https://doi.org/10.1007/s11892-005-0071-7
  16. Li, W., Zhang, M., Gu, J., Meng, Z. J., Zhao, L. C., Zheng, Y. N., Chen, L. and Yang, G. L. 2012. Hypoglycemic effect of protopanaxadiol-type ginsenosides and compound K on Type 2 diabetes mice induced by high-fat diet combining with streptozotocin via suppression of hepatic gluconeogenesis. Fitoterapia 83, 192-198. https://doi.org/10.1016/j.fitote.2011.10.011
  17. Lumeng, C. N., Deyoung, S. M., Bodzin, J. L. and Saltiel, A. R. 2007. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 56, 16-23. https://doi.org/10.2337/db06-1076
  18. Lyon, C. J., Law, R. E. and Hsueh, W. A. 2003. Minireview: adiposity, inflammation, and atherogenesis. Endocrinology 144, 2195-2200. https://doi.org/10.1210/en.2003-0285
  19. Palanivel, R., Vu, V., Park, M., Fang, X. and Sweeney, G. 2008. Differential impact of adipokines derived from primary adipocytes of wild-type versus streptozotocin-induced diabetic rats on glucose and fatty acid metabolism in cardiomyocytes. J Endocrinol 199, 389-397. https://doi.org/10.1677/JOE-08-0336
  20. Parikh, H., Carlsson, E., Chutkow, W. A., Johansson, L. E., Storgaard, H., Poulsen, P., Saxena, R., Ladd, C., Schulze, P. C., Mazzini, M. J., Jensen, C. B., Krook, A., Bjornholm, M., Tornqvist, H., Zierath, J. R., Ridderstrale, M., Altshuler, D., Lee, R. T., Vaag, A., Groop, L. C. and Mootha, V. K. 2007. TXNIP regulates peripheral glucose metabolism in humans. PLoS Med 4, e158. https://doi.org/10.1371/journal.pmed.0040158
  21. Pi-Sunyer, F. X. 2002. The obesity epidemic: pathophysiology and consequences of obesity. Obes Res 10, 97S-104S. https://doi.org/10.1038/oby.2002.202
  22. Poucher, S. M., Cheetham, S., Francis, J., Zinker, B., Kirby, M. and Vickers, S. P. 2012. Effects of saxagliptin and sitagliptin on glycaemic control and pancreatic beta-cell mass in a streptozotocin-induced mouse model of type 2 diabetes. Diabetes Obes Metab 14, 918-926. https://doi.org/10.1111/j.1463-1326.2012.01619.x
  23. Rajala, M. W. and Scherer, P. E. 2003. Minireview: The adipocyte--at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology 144, 3765-3773. https://doi.org/10.1210/en.2003-0580
  24. Reed, M. J., Meszaros, K., Entes, L. J., Claypool, M. D., Pinkett, J. G., Gadbois, T. M. and Reaven, G. M. 2000. A new rat model of type 2 diabetes: the fat-fed, streptozotocin- treated rat. Metabolism 49, 1390-1394. https://doi.org/10.1053/meta.2000.17721
  25. Ronti, T., Lupattelli, G. and Mannarino, E. 2006. The endocrine function of adipose tissue: an update. Clin Endocrinol (Oxf) 64, 355-365.
  26. Sartipy, P. and Loskutoff, D. J. 2003. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci USA 100, 7265-7270. https://doi.org/10.1073/pnas.1133870100
  27. Schnedl, W. J., Ferber, S., Johnson, J. H. and Newgard, C. B. 1994. STZ transport and cytotoxicity. Specific enhancement in GLUT2-expressing cells. Diabetes 43, 1326-1333. https://doi.org/10.2337/diabetes.43.11.1326
  28. Shoelson, S. E., Lee, J. and Goldfine, A. B. 2006. Inflammation and insulin resistance. J Clin Invest 116, 1793-1801. https://doi.org/10.1172/JCI29069
  29. Srinivasan, K., Viswanad, B., Asrat, L., Kaul, C. L. and Ramarao, P. 2005. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 52, 313-320. https://doi.org/10.1016/j.phrs.2005.05.004
  30. Tozzo, E., Gnudi, L. and Kahn, B. B. 1997. Amelioration of insulin resistance in streptozotocin diabetic mice by transgenic overexpression of GLUT4 driven by an adipose-specific promoter. Endocrinology 138, 1604-1611. https://doi.org/10.1210/en.138.4.1604
  31. Vozarova, B., Weyer, C., Hanson, K., Tataranni, P. A., Bogardus, C. and Pratley, R. E. 2001. Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obes Res 9, 414-417. https://doi.org/10.1038/oby.2001.54
  32. Weisberg, S. P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R. L. and Ferrante, A. W., Jr. 2003. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112, 1796-1808. https://doi.org/10.1172/JCI200319246
  33. Xu, H., Barnes, G. T., Yang, Q., Tan, G., Yang, D., Chou, C. J., Sole, J., Nichols, A., Ross, J. S., Tartaglia, L. A. and Chen, H. 2003. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112, 1821-1830. https://doi.org/10.1172/JCI200319451
  34. Yamamoto, H., Uchigata, Y. and Okamoto, H. 1981. Streptozotocin and alloxan induce DNA strand breaks and poly (ADP-ribose) synthetase in pancreatic islets. Nature 294, 284-286. https://doi.org/10.1038/294284a0