DOI QR코드

DOI QR Code

Protective Effect of Fisetin (3,7,3',4'-Tetrahydroxyflavone) against γ-Irradiation-Induced Oxidative Stress and Cell Damage

  • Piao, Mei Jing (School of Medicine and Institute for Nuclear Science and Technology, Jeju National University) ;
  • Kim, Ki Cheon (School of Medicine and Institute for Nuclear Science and Technology, Jeju National University) ;
  • Chae, Sungwook (Aging Research Center, Korea Institute of Oriental Medicine) ;
  • Keum, Young Sam (Department of Biochemistry, College of Pharmacy, Dongguk University) ;
  • Kim, Hye Sun (Cancer Research Institute, Seoul National University College of Medicine) ;
  • Hyun, Jin Won (School of Medicine and Institute for Nuclear Science and Technology, Jeju National University)
  • Received : 2013.02.07
  • Accepted : 2013.03.20
  • Published : 2013.05.31

Abstract

Ionizing radiation can induce cellular oxidative stress through the generation of reactive oxygen species, resulting in cell damage and cell death. The aim of this study was to determine whether the antioxidant effects of the flavonoid fisetin (3,7,3',4'-tetrahydroxyflavone) included the radioprotection of cells exposed to ${\gamma}$-irradiation. Fisetin reduced the levels of intracellular reactive oxygen species generated by ${\gamma}$-irradiation and thereby protected cells against ${\gamma}$-irradiation-induced membrane lipid peroxidation, DNA damage, and protein carbonylation. In addition, fisetin maintained the viability of irradiated cells by partially inhibiting ${\gamma}$-irradiation-induced apoptosis and restoring mitochondrial membrane potential. These effects suggest that the cellular protective effects of fisetin against ${\gamma}$-irradiation are mainly due to its inhibition of reactive oxygen species generation.

Keywords

References

  1. Arai, Y., Watanabe, S., Kimira, M., Shimoi, K., Mochizuki, R. and Kinae, N. (2000) Dietary intakes of fl avonols, fl avones and isofl avones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J. Nutr. 130, 2243-2250.
  2. Beecher, G. R. (2003) Overview of dietary fl avonoids: nomenclature, occurrence and intake. J. Nutr. 133, 3248S-3254S.
  3. Cai, J., Yang, J. and Jones, D. P. (1998) Mitochondrial control of apoptosis: the role of cytochrome c. Biochim. Biophys. Acta 1366, 139-149. https://doi.org/10.1016/S0005-2728(98)00109-1
  4. Carmichael, J., DeGraff, W. G., Gazdar, A. F., Minna, J. D. and Mitchell, J. B. (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47, 936-942.
  5. Cossarizza, A., Baccarani-Contri, M., Kalashnikova, G. and Franceschi, C. (1993) A new method for the cytofl uorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidaz olcarbocyanine iodide (JC-1). Biochem. Biophys. Res. Commun. 197, 40-45. https://doi.org/10.1006/bbrc.1993.2438
  6. Dubner, D., Gisone, P., Jaitavich, I. and Perez, M. (1995) Free radicals production and estimation of oxidative stress related to gamma irradiation. Biol. Trace Elem. Res. 47, 265-270. https://doi.org/10.1007/BF02790126
  7. Fotsis, T., Pepper, M. S., Montesano, R., Aktas, E., Breit, S., Schweigerer, L., Rasku, S., Wähälä, K. and Adlercreutz, H. (1998) Phytoestrogens and inhibition of angiogenesis. Baillieres Clin. Endocrinol. Metab. 12, 649-666. https://doi.org/10.1016/S0950-351X(98)80009-8
  8. Gudkov, S. V., Shtarkman, I. N., Smirnova, V. S., Chernikov, A. V. and Bruskov, V. I. (2006) Guanosine and inosine display antioxidant activity, protect DNA in vitro from oxidative damage induced by reactive oxygen species, and serve as radioprotectors in mice. Radiat. Res. 165, 538-545. https://doi.org/10.1667/RR3552.1
  9. Hanneken, A., Lin, F. F., Johnson, J. and Maher, P. (2006) Flavonoids protect human retinal pigment epithelial cells from oxidative-stress induced death. Invest. Ophthalmol. Vis. Sci. 47, 3164-3177. https://doi.org/10.1167/iovs.04-1369
  10. Halliwell, B. and Gutteridge, J. M. C. (1999) Oxidative stress: adaptation, damage, repair and death. In Free Radicals in Biology and Medicine (B. Halliwell and J.M.C. Gutteridge, Eds.), pp. 246-350. 3rd ed. Oxford University, Oxford.
  11. Ishige, K., Schubert, D. and Sagara, Y. (2001) Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic. Biol. Med. 30, 433-446. https://doi.org/10.1016/S0891-5849(00)00498-6
  12. Kim, S. Y., Seo, M., Oh, J. M., Cho, E. A. and Juhnn, Y. S. (2007) Inhibition of gamma ray-induced apoptosis by stimulatory heterotrimeric GTP binding protein involves Bcl-xL downregulation in SH-SY5Y human neuroblastoma cells. Exp. Mol. Med. 39, 583-593. https://doi.org/10.1038/emm.2007.64
  13. Lee, J. H., Kim, S. Y., Kil, I. S. and Park, J. W. (2007) Regulation of ionizing radiation-induced apoptosis by mitochondrial NADP+-dependent isocitrate dehydrogenase. J. Biol. Chem. 282, 13385-13394. https://doi.org/10.1074/jbc.M700303200
  14. Maher, P., Akaishi, T. and Abe, K. (2006) Flavonoid fi setin promotes ERK dependent long-term potentiation and enhances memory. Proc. Natl. Acad. Sci. U.S.A. 103, 16568-16573. https://doi.org/10.1073/pnas.0607822103
  15. Middleton, E. Jr, and Kandaswami, C. (1992) Effects of fl avonoids on immune and infl ammatory cell functions. Biochem. Pharmacol. 43, 1167-1179. https://doi.org/10.1016/0006-2952(92)90489-6
  16. Middleton, E. Jr, Kandaswami, C. and Theoharides, T. C. (2000) The effects of plant fl avonoids on mammalian cells: implications for infl ammation, heart disease, and cancer. Pharmacol. Rev. 52, 673-751.
  17. Ohkawa, H., Ohishi, N. and Yagi, K. (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  18. Okimoto, Y., Watanabe, A., Niki, E., Yamashita, T. and Noguchi, N. (2000) A novel fl uorescent probe diphenyl-1-pyrenylphosphine to follow lipid peroxidation in cell membranes. FEBS Lett. 474, 137-140. https://doi.org/10.1016/S0014-5793(00)01587-8
  19. Rajagopalan, R., Ranjan, S. K. and Nair, C. K. (2003) Effect of vinblastine sulfate on gamma-radiation-induced DNA single-strand breaks in murine tissues. Mutat. Res. 536, 15-25. https://doi.org/10.1016/S1383-5718(03)00015-9
  20. Reers, M., Smith, T. W. and Chen, L. B. (1991) J-aggregate formation of a carbocyanine as a quantitative fl uorescent indicator of membrane potential. Biochemistry 30, 4480-4486. https://doi.org/10.1021/bi00232a015
  21. Regula, K. M., Ens, K. and Kirshenbaum, L. A. (2003) Mitochondriaassisted cell suicide: a license to kill. J. Mol. Cell Cardiol. 35, 559-567. https://doi.org/10.1016/S0022-2828(03)00118-4
  22. Riley, P. A. (1994) Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int. J. Radiat. Biol. 65, 27-33. https://doi.org/10.1080/09553009414550041
  23. Rosenkranz, A. R., Schmaldienst, S., Stuhlmeier, K. M., Chen, W., Knapp, W. and Zlabinger, G. J. (1992) A microplate assay for the detection of oxidative products using 2′,7′-dichlorofl uorescein-diacetate. J. Immunol. Methods 156, 39-45. https://doi.org/10.1016/0022-1759(92)90008-H
  24. Sies, H. (1983) In Oxidative Stress (H. Sies, Ed.). Academic Press., New York.
  25. Simon, H. U., Haj-Yehia, A. and Levi-Schaffer, F. (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5, 415-418. https://doi.org/10.1023/A:1009616228304
  26. Singh, N. P. (2000) Microgels for estimation of DNA strand breaks, DNA protein cross links and apoptosis. Mutat. Res. 455, 111-127. https://doi.org/10.1016/S0027-5107(00)00075-0
  27. Spitz, D. R., Azzam, E. I., Li, J. J. and Gius, D. (2004) Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: A unifying concept in stress response biology. Cancer Metastasis Rev. 23, 311-322. https://doi.org/10.1023/B:CANC.0000031769.14728.bc
  28. Stadtman, E. R. (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu. Rev. Biochem. 62, 797-821. https://doi.org/10.1146/annurev.bi.62.070193.004053
  29. Sung, B., Pandey, M. K. and Aggarwal, B. B. (2007) Fisetin, an inhibitor of cyclindependent kinase 6, down-regulates nuclear factorkappaB-regulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptor interacting protein-regulated IkappaBalpha kinase activation. Mol. Pharmacol. 71, 1703-1714. https://doi.org/10.1124/mol.107.034512
  30. Troiano, L., Ferraresi, R., Lugli, E., Nemes, E., Roat, E., Nasi, M., Pinti, M. and Cossarizza, A. (2007) Multiparametric analysis of cells with different mitochondrial membrane potential during apoptosis by polychromatic fl ow cytometry. Nat. Protoc. 2, 2719-2727. https://doi.org/10.1038/nprot.2007.405
  31. Wang, L., Tu, Y. C., Lian, T. W., Hung, J. T., Yen, J. H. and Wu, M. J. (2006) Distinctive antioxidant and antiinfl ammatory effects of fl avonols. J. Agric. Food Chem. 54, 9798-9804. https://doi.org/10.1021/jf0620719
  32. Zamzami, N., Marchetti, P., Castedo, M., Zanin, C., Vayssiere, J. L., Petit, P. X. and Kroemer, G. (1995) Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J. Exp. Med. 181, 1661-1672. https://doi.org/10.1084/jem.181.5.1661
  33. Zamzami, N., Susin, S. A., Marchetti, P., Hirsch, T., Gomez-Monterrey, I., Castedo, M. and Kroemer, G. (1996) Mitochondrial control of nuclear apoptosis. J. Exp. Med. 183, 1533-1544. https://doi.org/10.1084/jem.183.4.1533
  34. Zbarsky, V., Datla, K. P., Parkar, S., Rai, D. K., Aruoma, O. I. and Dexter, D. T. (2005) Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fi setin in a 6-OHDA model of Parkinson's disease. Free Radic. Res. 39, 1119-1125.

Cited by

  1. Dietary Fisetin Supplementation Protects Against Alcohol-Induced Liver Injury in Mice vol.40, pp.10, 2016, https://doi.org/10.1111/acer.13172
  2. Fisetin attenuates hydrogen peroxide-induced cell damage by scavenging reactive oxygen species and activating protective functions of cellular glutathione system vol.50, pp.1, 2014, https://doi.org/10.1007/s11626-013-9681-6
  3. Flavonoids of Rosa roxburghii Tratt exhibit radioprotection and anti-apoptosis properties via the Bcl-2(Ca2+)/Caspase-3/PARP-1 pathway vol.21, pp.10, 2016, https://doi.org/10.1007/s10495-016-1270-1
  4. Radioprotective activity of blackcurrant extract evaluated by in vitro micronucleus and gene mutation assays in TK6 human lymphoblastoid cells vol.39, pp.1, 2017, https://doi.org/10.1186/s41021-017-0082-z
  5. Exploring the molecular targets of dietary flavonoid fisetin in cancer vol.40-41, 2016, https://doi.org/10.1016/j.semcancer.2016.04.003
  6. Kaempferol, a dietary flavonoid, ameliorates acute inflammatory and nociceptive symptoms in gastritis, pancreatitis, and abdominal pain vol.59, pp.7, 2015, https://doi.org/10.1002/mnfr.201400820
  7. Targeting mTOR signaling by polyphenols: A new therapeutic target for ageing vol.31, 2016, https://doi.org/10.1016/j.arr.2016.07.004
  8. Fisetin induces apoptosis in human nonsmall lung cancer cells via a mitochondria-mediated pathway vol.51, pp.3, 2015, https://doi.org/10.1007/s11626-014-9830-6
  9. Antiepileptic effect of fisetin in iron-induced experimental model of traumatic epilepsy in rats in the light of electrophysiological, biochemical, and behavioral observations vol.20, pp.4, 2017, https://doi.org/10.1080/1028415X.2016.1183342
  10. Non-thermal dielectric-barrier discharge plasma damages human keratinocytes by inducing oxidative stress vol.37, pp.1, 2016, https://doi.org/10.3892/ijmm.2015.2405
  11. The flavonoid fisetin as an anticancer agent targeting the growth signaling pathways vol.789, 2016, https://doi.org/10.1016/j.ejphar.2016.07.001
  12. Plant flavonoids in cancer chemoprevention: role in genome stability vol.45, 2017, https://doi.org/10.1016/j.jnutbio.2016.11.007
  13. The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways vol.12, pp.1, 2017, https://doi.org/10.1371/journal.pone.0169335
  14. Fisetin, a potential caloric restriction mimetic, attenuates senescence biomarkers in rat erythrocytes vol.97, pp.4, 2013, https://doi.org/10.1139/bcb-2018-0159
  15. Genome-Protecting Compounds as Potential Geroprotectors vol.21, pp.12, 2013, https://doi.org/10.3390/ijms21124484
  16. Proportional coexistence of okanin chalcone glycoside and okanin flavanone glycoside in Bidens pilosa leaves and theoretical investigation on the antioxidant properties of their aglycones vol.55, pp.1, 2013, https://doi.org/10.1080/10715762.2020.1859107