Abstract
A set of bilingual terms is one of the most important factors in building language-related applications such as a machine translation system and a cross-lingual information system. In this paper, we introduce a new approach that automatically extracts candidates of English-Korean bilingual terms by using a bilingual parallel corpus and a basic English-Korean lexicon. This approach can be useful even though the size of the parallel corpus is small. A sentence alignment is achieved first for the document-level parallel corpus. We can align words between a pair of aligned sentences by referencing a basic bilingual lexicon. For unaligned words between a pair of aligned sentences, several assumptions are applied in order to align bilingual term candidates of two languages. A location of a sentence, a relation between words, and linguistic information between two languages are examples of the assumptions. An experimental result shows approximately 71.7% accuracy for the English-Korean bilingual term candidates which are automatically extracted from 1,000 bilingual parallel corpus.
기계번역 시스템 구축에 가장 필수적인 요소는 번역하고자 하는 언어간의 단어쌍을 담고 있는 대역어 사전이다. 대역어 사전은 기계번역뿐만 아니라 서로 다른 언어간의 정보를 교환하는 모든 응용프로그램의 필수적인 지식원(knowledge source)이다. 본 연구에서는 문서 단위로 정렬된 병렬 코퍼스와 기본적인 대역어 사전을 이용하여 영-한 대역어를 자동으로 추출하는 방법에 대해 소개한다. 이 방법은 수집된 병렬 코퍼스의 크기에 영향을 받지 않는 방법이다. 문서 단위로 정렬된 병렬 코퍼스로부터 문장 단위의 정렬을 수행하고 다시 단어 단위의 정렬을 수행한 후, 정렬이 채 되지 않은 부분에 대해 추정 정렬을 수행한다. 추정 정렬에는 문장에서의 위치, 다른 단어와의 관계, 두 언어간의 언어적 정보등 다양한 정보가 사용된다. 이렇게 추정 정렬된 단어쌍으로부터 영-한 대역어를 추출할 수 있다. 약 1,000개로 구성된 병렬 코퍼스로부터 추출한 영-한 대역어는 71.7%의 정확도를 얻을 수 있었다.