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I. INTRODUCTION 
 
Predicting driving behavior by employing mathematical 

driver models, which are obtained directly from the observed 
driving-behavior data, has gained much attention in recent 
research. Various approaches have been proposed for mode-
ling driving behavior based on different interpretations and 
assumptions, such as the piecewise autoregressive exogenous 
(PWARX) model [1, 2], hidden Markov model (HMM) [3], 
neural network (NN) [4], and Gaussian mixture model 
(GMM) [5]. These approaches have reported impressive per-
formance on simulated and controlled driving data. Some 
of these promising techniques exploit a set of localized 
relationships to model driving behavior (e.g., mixture models, 
piecewise linear models). These models assume that the 
observed data are generated by a set of latent components, 

each having different characteristics and corresponding 
parameters. Therefore, complex driving behavior can be 
broken down into a reasonable number of sub-patterns. For 
instance, during car following, it is believed that drivers adopt 
different driving patterns or driving modes (e.g., normal 
following, approaching) under different driving situations, 
depending on individual and contextual factors. One chall-
enge in behavior modeling is to determine how many latent 
classes or localized relationships exist between the stimuli 
and the driver’s responses (i.e., model selection problem), and 
to estimate the properties of these hidden components from 
the given observations. In general, a trade-off in selecting the 
number of components arises: with too many components, the 
obtained model may over-fit the data, while a model with too 
few components may not be flexible enough to represent an 
underlying distribution of observations. 
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Abstract 
This paper presents a stochastic driver behavior modeling framework which takes into account both individual and general 
driving characteristics as one aggregate model. Patterns of individual driving styles are modeled using a Dirichlet process 
mixture model, as a non-parametric Bayesian approach which automatically selects the optimal number of model components 
to fit sparse observations of each particular driver’s behavior. In addition, general or background driving patterns are also 
captured with a Gaussian mixture model using a reasonably large amount of development data from several drivers. By 
combining both probability distributions, the aggregate driver-dependent model can better emphasize driving characteristics of 
each particular driver, while also backing off to exploit general driving behavior in cases of unseen/unmatched parameter 
spaces from individual training observations. The proposed driver behavior model was employed to anticipate pedal operation 
behavior during car-following maneuvers involving several drivers on the road. The experimental results showed advantages 
of the combined model over the model adaptation approach. 
 
Index Terms: Car following, Driver behavior, Mixture model, Model adaptation, Non-parametric Bayesian   
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A finite GMM [6] is a well-known probabilistic and 
unsupervised modeling technique for multivariate data with 
an arbitrarily complex probability density function (pdf). 
Expectation-maximization (EM) is a powerful algorithm 
for estimating parameters of finite mixture models that 
maximizes the likelihood of observed data. However, the 
EM algorithm is sensitive to initialization (i.e., it may 
converge to a local maximum), and may converge to the 
boundary of a parameter space, leading to a meaningless 
estimate [6]. Moreover, EM provides no explicit solution to 
the model selection problem, and may not yield a well-
behaved distribution when the amount of training data is 
insufficient. 

Recently, the Dirichlet process mixture model (DPM), a 
non-parametric Bayesian approach, has been proposed to 
circumvent such issues [7, 8]. Unlike finite mixture models, 
DPM estimates the joint distribution of stimuli and 
responses using a Dirichlet process mixture by assuming 
that the number of components is random and unknown. 
Specifically, a hidden parameter is first drawn from a base 
distribution; consequently, observations are generated 
from a parametric distribution conditioned on the drawn 
parameter. Therefore, DPM avoids the problem of model 
selection by assuming that there are an infinite number of 
latent components, but that only a finite number of 
observations could be observed. Most importantly, DPM is 
capable of choosing an appropriate number of latent 
components to explain the given data in a probabilistic 
manner. DPM has been successfully applied in several 
applications such as modeling content of documents and 
spike sorting [7, 9]. 

In car following, driver behavior is influenced by both 
individual and situational factors [10, 11]; hence, the best 
driver behavior model for each particular driver should be 
obtained by using individual observations that include all 
possible driving situations. However, at present, it is not 
practical to collect such a large amount of driving data from 
one particular driver in order to create a driver-specific 
model. To circumvent this issue, a general or universal 
driver model, which is obtained by using a reasonable 
amount of observations from several drivers, is used to 
represent driving behavior in a broad sense (e.g., average or 
common relationships between stimuli and responses). 
Subsequently, a driver-dependent model can be obtained 
using a model adaptation framework that can automatically 
adjust the parameters of the universal driver model by 
shifting the localized distributions towards the available 
individual observations [5]. 

In this paper, we proposed a new stochastic driver behavior 
model that better represents underlying individual driving 
characteristics, while retaining general driving patterns. To 
cope with sparse amounts of individual driving data and the 
model selection problem, we employed DPM to train an 

individual driver behavior model in order to capture unique 
driving styles from available observations. Furthermore, in 
order to cope with unseen or unmatched driving situations 
that may not be present in individual training observations, 
we employed a GMM with a classical EM algorithm to train a 
universal driver model from observations of several drivers. 
Finally, the driver-dependent model is obtained by combining 
both driver models into one aggregate model in a probabilistic 
manner. As a result, the combined model contains both 
individual and background distributions that can better 
represent both observed and unobserved driving behavior of 
individual drivers. 

Experimental validation was conducted by observing the 
car-following behavior of several drivers on the road. The 
objective of a driver behavior model is to anticipate car-
following behavior in terms of pedal control operations (i.e., 
gas and brake pedal pressures) in response to the observable 
driving signals, such as the vehicle velocity and the 
following distance behind the leading vehicle. We 
demonstrated that the proposed combined driver model 
showed better prediction performance than both individual 
and general models, as well as the driver-adapted model 
based on the maximum a posteriori (MAP) criterion [5]. 

 
 

II. CAR FOLLOWING AND DRIVER BEHAVIOR 
MODEL 

 
Car-following characterizes longitudinal behavior of a 

driver while following behind another vehicle. In this study, 
we focus on car following in the sense of the way the 
behavior of the driver of a following vehicle is affected by 
the driving environment (i.e., the behavior of the leading 
vehicle) and by the status of the driver’s own vehicle. There 
are several contributory factors in car-following behavior 
such as the relative position and velocity of the following 
vehicle with respect to the lead vehicle, the acceleration and 
deceleration of both vehicles, and the perception and 
reaction time of the following driver.  

 
 

 
Fig. 1. Car-following and corresponding parameters. 
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Fig. 1 shows a basic diagram of car following and its 
corresponding parameters, where ,,, t

f
t

f
t fav f

tx  repre-
sent the vehicle velocity, acceleration and deceleration, 
distance between vehicles, and observed feature vector at 
time t, respectively. 

In general, a driver behavior model predicts a pattern of 
pedal depression by a driver in response to the present 
velocity of the driver’s vehicle and the relative distance 
between the vehicles. Subsequently, the vehicle velocity and 
the relative distance are altered corresponding to the vehicle 
dynamics, which responds to the driver’s control behavior 
of the gas and brake pedals. Most conventional car- 
following models [12-14] ignore the stochastic nature and 
multiple states of driving behavior characteristics. Some 
models assume that a driver’s responses depend on only one 
stimulus such as the distance between vehicles. In this study, 
we aim to model driver behavior by taking into account 
stochastic characteristics with multiple states involving 
multi-dimensional stimuli. Therefore, we adopt stochastic 
mixture models to represent driving behavior. 

 
 

III. STOCHASTIC DRIVER MODELING 
 

The underlying assumption of a stochastic driver behavior 
modeling framework is that as a driver operates the gas and 
brake pedals in response to the stimuli of the vehicle 
velocity and following distance, the patterns can be modeled 
accordingly using the joint distribution of all the correlated 
parameters. In the following subsections, we will describe 
driver behavior models based on GMM, DPM, and the 
model combination.    

 
A. Gaussian Mixture Model 

 
In a finite mixture model, we assume that K latent 

(hidden) components with different characteristics and 
corresponding parameters (θk) underlie the observed 
data          . The observed data are generated from a 
mixture of these multiple components. In particular, the total 
amount of data generated by component k is defined by its 
mixing probability πk. The model is formulated as: 

 
                  (1) 
 

 
where p(O) denotes the pdf of O and     

In general, the hidden parameters (θ = {µ, Σ}) and mixing 
probability can be obtained or trained automatically by 
maximizing standard evaluation functions such as the 
maximum likelihood (ML) criterion. The most practical and 
powerful method for obtaining ML estimates of the 
parameters is the EM algorithm. However, the major 

drawback of the EM algorithm is that it is necessary to 
determine K in advance. In addition, specifying the correct 
value of K is not an easy task and using an improper value 
for K may degrade model fitting [6], given that obtaining 
well-defined full-covariance matrices for higher values of K 
requires a large amount of training data. Further details on 
GMM-based driver models can be found in [5]. 
 
B. Dirichlet Process Mixture Model 

 
By adopting a fully Bayesian approach, DPM does not 

require K to be specified; instead, it chooses an appropriate 
number of components to explain the given data in a 
probabilistic manner. In a Bayesian mixture model, we 
assume that the underlying distribution of observations O 
can be represented by a mixture of parametric densities 
conditioned on a hidden parameter θ = {µ, Σ}. In the above-
mentioned finite mixture model, the EM algorithm assumes 
that the prior probability of all hypotheses is equal, and 
hence seeks a single model with the highest posterior 
probability. However, in DPM, the hidden parameter θ is 
also considered to be a random variable that is drawn from a 
probability distribution, particularly a Dirichlet process, as: 

 
 

(2) 
 

 
where α is a concentration parameter, and G0 is a base 
distribution. The DPM here chooses the conjugate in 
advance for the model parameters: Dirichlet for π, and 
normal-inverse Wishart (NIW) for θ (therefore, both prior 
and posterior distributions are in the same family): 
 
 

(3)            
 
 

where NIW is represented by a mean vector µ0 and its 
scaling parameter υ, and a covariance matrix Λ with its 
scaling parameter α. These parameters are used to encode 
our prior belief regarding the shape and position of the 
mixture density. Finally, the posterior distribution of this 
model can be expressed by: 
 

 
 (4) 

 
 

where          indicates the component ownership or 
mixture index of each observation. One can obtain samples 
from this distribution using Markov chain Monte Carlo 
(MCMC) methods [8], particularly Gibbs sampling, in 
which new values of each model parameter are repeatedly 
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sampled, conditioned on the current values of all the other 
parameters. Eventually, Gibbs samples approximate the 
posterior distribution upon convergence. As a result, this 
avoids the problem of model selection and local maxima by 
assuming that there are an infinite number of hidden 
components, but only a finite number of which could be 
observed from the data. 
As the state of the distribution consists of parameters C and 
Θ, the Gibbs sampling will first sample the new values of Θ 
conditioned on the initialized C and most recent values of 
the other variables as:      
 

                                        (5) 
 
 

where                    and        is the 
probability of θk under a given NIW. Subsequently, given 
a new Θ, C can be sampled according to the following 
conditional distribution: 
 

)|(),|(),,,,|( iiiiii CcPcoPOCkcP −− Θ∝Θ= απ   (6) 

 
where                               . The term can 
be derived using the Chinese restaurant process (a genera-
lization of a Dirichlet process) [7]:  

 
 

                                    (7) 

 
 

where mk is the number of data in cluster k. Both steps are 
repeated iteratively until it converges. Further details can be 
found in [7-9].   
 
C. Maximum A Posterior Adaptation 

 
Also known as Bayesian adaptation, MAP adaptation re-

estimates the model parameters individually by shifting the 
original statistic toward the new adaptation data. Given a set 
of adapting data, {on}, n = 1,…, N, and an initialized GMM 
(i.e., driver model), the adapted GMM can be obtained by 
modifying the mean vectors as follows : 

 

        (8) 

 
where, r is a constant relevant factor (e.g., [15]), and k and 
Ek can be computed as 
 

                                        (9) 
 
 

where hk(on) is a posterior probability that on belongs to the 
k-th component, as 
 

                                        (10) 

 
where         is the marginal probability of the 
observed parameter on generated by the k-th Gaussian 
component. 

The adapted model is thus updated so that the mixture 
components with high counts of data from a particular 
characteristic/correlation rely more on the new sufficient 
statistic of the final parameters. More discussion of MAP 
adaptation for a GMM can be found in [16]. 
 
D. Model Combination 
 

Fig. 2 illustrates an example of an observed driving 
trajectory (solid line) overlaid with a corresponding pdf 
generated by the well-trained DPM (the smaller pdf plot). 
The bigger pdf plot in the background represents a general 
joint distribution (e.g., the universal driver model). The 
dotted line represents an unseen car-following trajectory 
during the validation stage. As we can see, the individual 
driver model obtained using a DPM is better at modeling 
the joint probability of the observed driving trajectory than 
the universal background driver model. However, the 
individual model is focused on parameter space that does 
not cover the test driving trajectory, and hence cannot 
represent unseen driving behavior. Although not parti-
cularly optimized for this particular driver, the universal 
background model can better represent common driving 
behavior in most situations. 

 
 

 

Fig. 2. Illustration of the observed driving trajectory (solid line) overlaid 
with corresponding pdf of the trained DPM (smaller pdf). The bigger pdf 
represents the universal or background model. The dotted trajectory 
represents unseen/unmatched driving data from training observations. pdf: 
probability density function, DPM: Dirichlet process mixture model, GMM: 
Gaussian mixture model. 
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By combining these two probability distributions into a 
single aggregate distribution, the resulting driver-dependent 
model can better represent individual driving characteristics 
that were previously observed by the individual distribution 
(Θindividual), as well as explain unseen driving characteristics 
by the background distribution (Θgeneral). In this study, we 
apply weighted linear aggregation of two probability 
distributions as 

 
                                            (11) 

 
where 0 ≤ δ ≤ 1.0 is  the  mixing weight. This simple 
combination method is easy to comprehend and performs as 
well as more complex aggregation models. Moreover, the 
aggregation result satisfies the axioms of probability 
distribution, especially marginalization property [17]. As the 
mixing density components of both a DPM and GMM are 
assumed to be Gaussian, the combined mixture model can 
be obtained by merging all mixtures of both distributions 
and then constraining all the mixing weights to be equal to 
one. 
 
 
IV. MIXTURE MODEL REGRESSION 
 

In a regression problem, an observation consists of both 
input stimuli and output responses (O = {X, Y}). Given a 
new set of stimuli xnew, the corresponding responses can be 
predicted via its conditional expectation E(Y|xnew). In 
Bayesian regression, given a joint (Gaussian) distribution 
between X and Y, the posterior probability can be computed 
as follows: 

 

                                          (12) 

 
 
where the mean vector µ is a concatenation of a mean vector 
of the present observation µx and a mean of response value 
µy. Similarly, the covariance matrix is composed of the auto-
covariance and cross-covariance matrices of these two 
parameter sets. 
 

                                          (13) 

 
Thus, the optimal prediction of the observation xnew given 

by each mixture component can be represented as the 
posterior expectation as: 

 

                                          (14) 

Consequently, the predicted responses ypred, given xnew and a 
number of Gaussian components can be computed as:      
 

                                          (15) 

 
 
V. EXPERIMENTAL EVALUATION 
 
A. Data Pre-processing 
 

The driving signals utilized are limited to following 
distance (m), vehicle velocity (km/hr), and gas and brake 
pedal forces (N), obtained from a real-world driving corpus 
[18]. All the acquired analog driving signals from the 
sensory systems of the instrumented vehicle are re-sampled 
to 10 Hz, as well as rescaled into their original units. The 
offset values caused by gas and brake pedal sensors are 
removed from each file, based on estimates obtained using a 
histogram-based technique. Furthermore, manual annotation 
of driving-signal data and driving scenes was used to verify 
that only concrete car-following events with legitimate 
driving signals that last more than 10 seconds are considered 
in this study. Cases where the lead vehicle changes its lane 
position, or another vehicle cuts in and then acts as a new 
lead vehicle are regarded as two separate car-following 
events. Consequently, the evaluation is performed using 
approximately 300 minutes of clean and realistic car-
following data from 64 drivers. The data was randomly 
partitioned into two subsets of drivers for the open-test 
evaluation (i.e., training and validation of the driver 
behavior model). All the following evaluation results are 
reported as the average of both subsets, except when stated 
otherwise.  

 
B. Feature Vector 
 

In this study, an observed feature vector (stimuli) at time t, 
xt, consists of the vehicle velocity, following distance, and 
pedal pattern (Pt) with their first-order (∆) and second-order 
(∆2) derivatives as: 

                                              

                                       (16) 

 
where the ∆(·) operator of a parameter is defined as 
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In contrast to the EM-based individual driver model, the 
driver-adapted (UBM-MAP) models tended to have better 
performance as the number of mixture components 
increased. This is because a reasonable amount of training 
data is needed to train a well-defined UBM, and some 
local mixtures were then adapted to better fit individual 
driving characteristics. When we combined the UBMs 
with the DPM-based individual model, the prediction 
performance was better than the driver-adapted (UBM-
MAP) model. The best performance was obtained by 
combining the 16-mixture UBM with DPMs that contained 
approximately 10 mixtures per driver on the average. 
Although the total number of components in the combined 
model is more than the original UBM, the achieved 
performance is considerably better than the 32-mixture 
UBM-MAP adapted model with fewer total mixtures (26 
mixtures per driver on average). 
 
 
VI. CONCLUSIONS 
 

In this paper, we presented a stochastic driver behavior 
model that takes into account both individual and general 
driving characteristics. In order to capture individual driving 
characteristics, we employed a DPM, which is capable of 
selecting the appropriate number of components to capture 
underlying distributions from a sparse or relatively small 
number of observations. Using different approach, a general 
driver model was obtained by using a parametric GMM 
trained with a reasonable amount of data from several 
drivers, and then employed as a background distribution. By 
combining these two distributions, the resulting driver 
model can effectively emphasize a driver’s observed 
personalized driving styles, as well as support many 
common driving patterns for unseen situations that may be 
encountered. The experimental results using on-the-road 
car-following behavior showed the advantages of the com-
bined model over the adapted model. Our future work will 
consider a driver behavior model with tighter coupling 
between individual and general characteristics, while 
reducing the number of model components used, in order to 
achieve more efficient computation. 
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