DOI QR코드

DOI QR Code

영상집성 자동화 시스템 개발을 위한 비측량용 카메라의 최적 촬영각 및 중복도 결정

Decision on the Optimal Photographing Angle and Overlapping Ratio of Non-metric Cameras for Development of Automatic Image Stitching System

  • 김대성 (새한항업 지오매틱스연구소) ;
  • 신상철 (새한항업 지오매틱스연구소)
  • 투고 : 2013.05.03
  • 심사 : 2013.06.21
  • 발행 : 2013.06.30

초록

본 연구는 비측량용 카메라와 전방위 회전이 가능한 헤드 장비를 이용하여 자동 영상집성을 수행하기 위한 최적의 촬영각 및 중복도를 결정하는데 초점을 맞추고 있다. 렌즈 종류별 화각, 헤드의 옵션별 이동각을 고려하여 중복도를 계산하고, 촬영 소요시간, 저장용량, 실제 영상집성 성능 등을 감안하여 최적의 촬영중복도와 촬영각을 결정하였다. 실험결과를 통해, 35mm 렌즈를 사용하여 수직방향으로 $36^{\circ}$(33.82% 중복도), 수평방향으로 $24^{\circ}$ 또는 $30^{\circ}$(36.51% 또는 20.63% 중복도) 간격으로 촬영하는 것이 자동 영상집성에 가장 효과적임을 확인할 수 있었다.

This study focuses on the determination of optimal photographing angle and overlapping ratio for automatic image stitching system using a non-metric camera module with motorized head. Photographing overlap was calculated considering the angle of view on different kinds of lenses and moving angle of motorized head per each option, and optimal photographing angle and overlapping ratio could be determined through the experimental result using the operating time, data volume and performance of image stitching. Through this experiment, we could find that it was effective to take a picture with $36^{\circ}$ of interval(33.82% of overlap) in vertical direction and $24^{\circ}$ or $30^{\circ}$ of interval(36.51% or 20.63% of overlap) in horizontal direction using 35mm lens for automatic image stitching system.

키워드

참고문헌

  1. Antony, D., and Surendran S., 2013, Satellite image registration and image stitching, International Journal of Computer Science & Engineering Technology (IJCSET), Vol. 4, No. 2, pp. 62-66.
  2. easypano webpage, http://www.easypano.com/Panoramasoftware- 47_382.html
  3. flashpanoramas webpage, http://flashpanoramas.com/ forum/showthread.php?t=2434
  4. Henke, B., 2012, Automatic panoramic image stitching: a summary of the fundamental workflows and challenges, Thesis, Colorado University.
  5. Huang, F., Wei, S., and Klette, R., 2006, Rotating line cameras: model and calibration, IMA Preprint Series #2104, Institute for mathematics and ITS applications, University of Minnesota.
  6. Ministry of Land, Infrastructure and Transport, 2012, A study on indoor spatial information and management system of location search. pp. 15. (in Korean)
  7. Nara Index webpage, http://www.index.go.kr/egams/ stts/jsp/potal/stts/PO_STTS_IdxMain.jsp?idx_cd=1226
  8. National Geographic Information Institute, 2012, The rule of 3D spatial information construction task, National Geographic Information Institute Notification, No. 2012-1660, pp. 7, 35. (in Korean)
  9. Oh, S. J., and Lee, I. P., 2011, Estimation of 3D object points from omni-directional images acquired by a rotating line camera, the 32nd Asian Conference on Remote Sensing, Taipei, Taiwan.
  10. Oh, S. J., and Lee, I. P., 2012, Georeferencing of indoor omni-directional images acquired by a rotating line camera, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, Vol. 30, No. 2, pp. 211-221. https://doi.org/10.7848/ksgpc.2012.30.2.211
  11. Szeliski, R., 2006, Image alignment and stitching: a tutorial (MSRTR-2004-92), http://research.microsoft.com/pubs/70092/tr-2004-92.pdf.
  12. U.S. Environmental Protection Agency. 1989. Report to congress on indoor air quality: volume 2, EPA/ 400/1-89/001C, Washington, DC.
  13. Wei, S., Huang, F., and Klette, R., 2002, The design of a stereo panorama camera for scenes of dynamic range, 16th International Conference on Pattern Recognition (ICPR 2002), Quebec, Canada, pp. 635-638.