DOI QR코드

DOI QR Code

Fabrication of Fe-TiB2 Composite Powder by High-Energy Milling and Subsequent Reaction Synthesis

  • Khoa, H.X. (School of Materials Science and Engineering, University of Ulsan) ;
  • Tuan, N.Q. (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Y.H. (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, B.H. (School of Materials Science and Engineering, University of Ulsan) ;
  • Viet, N.H. (School of Materials Science and Engineering, Hanoi University of Science and Technology) ;
  • Kim, J.S. (School of Materials Science and Engineering, University of Ulsan)
  • Received : 2013.06.11
  • Accepted : 2013.06.24
  • Published : 2013.06.28

Abstract

$TiB_2$-reinforced iron matrix composite (Fe-$TiB_2$) powder was in-situ fabricated from titanium hydride ($TiH_2$) and iron boride (FeB) powders by the mechanical activation and a subsequent reaction. Phase formation of the composite powder was identified by X-ray diffraction (XRD). The morphology and phase composition were observed and measured by field emission-scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS), respectively. The results showed that $TiB_2$ particles formed in nanoscale were uniformly distributed in Fe matrix. $Fe_2B$ phase existed due to an incomplete reaction of Ti and FeB. Effect of milling process and synthesis temperature on the formation of composite were discussed.

Keywords

References

  1. H. O. Pierson: Handbook of Refractory Carbides and Nitrides, William Andrew Publishing/Noyes, 1996.
  2. C. C. Degnan and P. H. Shipway: Metall. Mater. Trans. A, 33 (2002) 2973. https://doi.org/10.1007/s11661-002-0282-3
  3. R. M. Aikin, Jr.: JOM, 49(8) (1997) 35.
  4. B. S. Du, Z. D. Zou, X. H. Wang and S. Y. Qu: Mater. Lett., 62 (2008) 689. https://doi.org/10.1016/j.matlet.2007.06.036
  5. B. S. Du, Z. D. Zou, X. H. Wang and S. Y. Qu: Appl. Surf. Sci., 254 (2008) 6489 . https://doi.org/10.1016/j.apsusc.2008.04.051
  6. M. Darabara, G. D. Papadimitriou and L. Bourithis: Surf. Coat. Technol., 201 (2006) 3518. https://doi.org/10.1016/j.surfcoat.2006.08.105
  7. Animesh Anal, T. K. Bandyopadhyay and K. Das: J. Mater. Process. Technol., 172 (2006) 70. https://doi.org/10.1016/j.jmatprotec.2005.09.011
  8. O. K. Lepakova, L. G. Raskolenko and Y. M. Maksimov: Combust. Explos., 36(5) (2000) 575. https://doi.org/10.1007/BF02699520
  9. E. G. Avvakumov, A. R. Potkin and O. I. Samarin: Planetary mill. Author's certificate No. 975068, USSR, Patent Bulletin, No. 43 (1982).
  10. V. Bhosle, E.G. Baburaj, M. Miranova and K. Salama: Mater. Sci. Eng. A, 356 (2003) 190. https://doi.org/10.1016/S0921-5093(03)00117-5
  11. NIST-JANAF Thermochemical Tables Fourth Edition Part I, Al-Co, W.C. Malcolm, Jr.(Ed.), American Institute of Physics, (1998) 276.
  12. NIST-JANAF Thermochemical Tables Fourth Edition Part I, Al-Co, W.C. Malcolm, Jr.(Ed.), American Institute of Physics, (1998) 539.
  13. NIST-JANAF Thermochemical Tables Fourth Edition Part I, Al-Co, W.C. Malcolm, Jr.(Ed.), American Institute of Physics, (1998) 1341.
  14. J. C. Gachon, M. Notin and J. Hertz: Thermochim. Acta., 48 (1981) 155. https://doi.org/10.1016/0040-6031(81)87031-1

Cited by

  1. particulates pp.1530-793X, 2017, https://doi.org/10.1177/0021998317712569
  2. particles reinforced steel matrix composites vol.34, pp.16, 2018, https://doi.org/10.1080/02670836.2018.1497130
  3. Mechanical and Wear Behaviour of Hot-Pressed 304 stainless Steel Matrix Composites Containing TiB2 Particles pp.0975-1645, 2019, https://doi.org/10.1007/s12666-019-01588-1