DOI QR코드

DOI QR Code

Color Evolution and Phase Transformation of α-FeOOH@SiO2 and β-FeOOH@SiO2 pigments

SiO2가 코팅된 α-FeOOH와 β-FeOOH의 상전이를 통한 SiO2가 코팅된 α-Fe2O3의 색상 연구

  • Yu, Ri (Engineering Ceramic Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Choi, Kyoon (Engineering Ceramic Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Pee, Jae-Hwan (Engineering Ceramic Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, YooJin (Engineering Ceramic Center, Korea Institute of Ceramic Engineering & Technology)
  • 유리 (한국세라믹기술원, 엔지니어링 세라믹 센터) ;
  • 최균 (한국세라믹기술원, 엔지니어링 세라믹 센터) ;
  • 피재환 (한국세라믹기술원, 엔지니어링 세라믹 센터) ;
  • 김유진 (한국세라믹기술원, 엔지니어링 세라믹 센터)
  • Received : 2013.05.09
  • Accepted : 2013.06.05
  • Published : 2013.06.28

Abstract

This manuscript reports on compared color evolution about phase transformation of ${\alpha}-FeOOH@SiO_2$ and ${\beta}-FeOOH@SiO_2$ pigments. Prepared ${\alpha}$-FeOOH and ${\beta}$-FeOOH were coated with silica for enhancing thermal properties and coloration of both samples. To study phase and color of ${\alpha}$-FeOOH and ${\beta}$-FeOOH, we prepared nano sized iron oxide hydroxide pigments which were coated with $SiO_2$ using tetraethylorthosilicate and cetyltrimethyl-ammonium bromide as a surface modifier. The silica-coated both samples were calcined at high temperatures (300, 700 and $1000^{\circ}C$) and characterized by scanning electron microscopy, CIE $L^*a^*b^*$ color parameter measurements, transmission electron microscopy and UV-vis spectroscopy. The yellow ${\alpha}$-FeOOH and ${\beta}$-FeOOH was transformed to ${\alpha}-Fe_2O_3$ with red, brown at 300, $700^{\circ}C$, respectively.

Keywords

References

  1. H. Katsuki and S. Komarneni: J. Am. Ceram. Soc., 86 (2003) 183. https://doi.org/10.1111/j.1151-2916.2003.tb03300.x
  2. H. Katsuki and S. Komarneni: J. Am. Ceram. Soc., 84 (2001) 2313.
  3. S. B. Rawal, A. K. Chakraborty and W. I. Lee: Bull. Korean Chem. Soc., 30 (2009) 2613. https://doi.org/10.5012/bkcs.2009.30.11.2613
  4. M. Charles and JR. Flynn: Chem. Rev., 84 (1984) 31. https://doi.org/10.1021/cr00059a003
  5. Z. C. Tan, L. X. Sun, S. H. Meng, L. Li and J. B. Zhang: J. Chem. Thermodyn., 34 (2009) 1417.
  6. Z. Nan, C. Wei, Q. Yang and Z. C. Tan: J. Chem. Eng. Data, 54 (2009) 1367. https://doi.org/10.1021/je900019f
  7. Y. J. Kim, J. H. Pee, J. H. Chang, K. Choi, K. J. Kim and D. Y. Jung: Chem. Lett., 38 (2009) 842. https://doi.org/10.1246/cl.2009.842
  8. R. Yu, Y. J. Kim, J. H. Pee, K. J. Kim and W. Kim: J. Nanosci. Nanotechnol., 11 (2011) 6283. https://doi.org/10.1166/jnn.2011.4379
  9. S. Krehula, S. Popovic and S. Music: Mater. Lett., 54 (2002) 108. https://doi.org/10.1016/S0167-577X(01)00546-8
  10. F. Bondioli, T. Manfredini and C. Siligardi: J. Am. Ceram. Soc., 88 (2005) 1070. https://doi.org/10.1111/j.1551-2916.2005.00217.x

Cited by

  1. Pigment vol.21, pp.5, 2014, https://doi.org/10.4150/KPMI.2014.21.5.377