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SECOND-ORDER UNIVEX FUNCTIONS AND

GENERALIZED DUALITY MODELS FOR

MULTIOBJECTIVE PROGRAMMING PROBLEMS

CONTAINING ARBITRARY NORMS

G. J. Zalmai

Abstract. In this paper, we introduce three new broad classes of second-
order generalized convex functions, namely, (F , b, φ, ρ, θ)-sounivex func-
tions, (F , b, φ, ρ, θ)-pseudosounivex functions, and (F , b, φ, ρ, θ)-quasiso-
univex functions; formulate eight general second-order duality models;
and prove appropriate duality theorems under various generalized (F , b,
φ, ρ, θ)-sounivexity assumptions for a multiobjective programming prob-
lem containing arbitrary norms.

1. Introduction

In this paper, we present a fairly large number of second-order duality results
under a variety of generalized (F , b, φ, ρ, θ)-sounivexity conditions for the fol-
lowing multiobjective programming problem involving nondifferentiable func-
tions:

(P ) Minimize
(

F1(x) + ‖A1x‖a(1), . . . , Fp(x) + ‖Apx‖a(p)
)

subject to

Gj(x) + ‖Bjx‖b(j) ≦ 0, j ∈ q, Hk(x) = 0, k ∈ r, x ∈ X,

where X is an open convex subset of Rn (n-dimensional Euclidean space), Fi,
i ∈ p ≡ {1, 2, . . . , p}, Gj , j ∈ q, and Hk, k ∈ r, are real-valued functions defined
on X , for each i ∈ p and each j ∈ q, Ai and Bj are, respectively, mi × n and
nj × n matrices, and ‖ · ‖a(i) and ‖ · ‖b(j) are arbitrary norms on Rmi and Rnj ,
respectively.
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Second-order duality for a conventional nonlinear programming problem of
the form

(P0) Minimize f(x) subject to gi(x) ≦ 0, i ∈ m, x ∈ Rn,

where f and gi, i ∈ m, are real-valued functions defined onRn, was initially con-
sidered by Mangasarian [24]. The idea underlying his approach to constructing
a second-order dual problem was based on taking linear and quadratic ap-
proximations of the objective and constraint functions about an arbitrary but
fixed point, forming the Wolfe dual of the approximated problem, and then
letting the fixed point to vary. More specifically, he formulated the following
second-order dual problem for (P0):

(D0) Maximize f(y) +

m
∑

i=1

uigi(y)−
1

2

〈

z,
[

∇2f(y) +

m
∑

i=1

ui∇
2gi(y)

]

z
〉

subject to

∇f(y) +
m
∑

i=1

ui∇gi(y) +
[

∇2f(y) +
m
∑

i=1

ui∇
2gi(y)

]

z = 0,

y ∈ Rn, u ∈ Rm, u ≧ 0, z ∈ Rn,

where ∇F (y) and ∇2F (y) are, respectively, the gradient and Hessian of the
function F : Rn → R evaluated at y, and 〈a, b〉 denotes the inner (scalar)
product of the ν-dimensional vectors a and b, that is, 〈a, b〉 =

∑ν
i=1 aibi, where

ai and bi are the ith components of a and b, respectively. Imposing some-
what complicated conditions on f, gi, i ∈ m, and z, he proved weak, strong,
and converse duality theorems for (P0) and (D0). Reconsidering Mangasar-
ian’s second-order problem, Mond [28] established some duality results under
relatively simpler conditions involving a certain second-order generalization of
the concept of convexity, pointed out some possible computational advantages
of second-order duality results, and also studied a pair of second-order sym-
metric dual problems. Subsequently, Mond’s original notion of second-order
convexity was generalized by other authors in different ways and utilized for
establishing various second-order duality results for several classes of nonlinear
programming problems. For brief accounts of the evolution of these generalized
second-order convexity concepts, the reader is referred to [3, 18, 31, 32], and
for more information about second- and higher-order duality results, the reader
may consult [1-11, 13-18, 20-29, 31-34, 36-39, 42-44].

In this paper, we propose and discuss substantial improvements and exten-
sions of the problem models as well as the related second-order duality results
presented earlier in several of the above-mentioned publications. In particular,
our results generalize those obtained previously by Aghezzaf [1]. More specif-
ically, we consider a much more general multiobjective optimization problem
than the one studied by Aghezzaf in that our problem includes both equal-
ity and inequality constraints, and contains arbitrary norms in the objective
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functions and inequality constraints, which, in turn, subsumes multiobjective
nonlinear programming problems involving square roots of positive semidefinite
quadratic forms; we formulate and discuss eight general second-order duality
models, whereas Aghezzaf considers only one dual problem; the convexity con-
ditions (generalized (F , b, φ, ρ, θ)-sounivexity) under which duality theorems
are proved in our paper are much more general than those (generalized (F, ρ)-
convexity) used in his paper; we present a great variety of second-order duality
results most of which are not even mentioned in his paper; and our paper con-
tains a much more complete list of references dealing with various second-order
duality issues.

The rest of this paper is organized as follows. In Section 2, we present a few
definitions and auxiliary results which will be needed in the sequel. Utilizing a
partitioning scheme, in Section 3 we formulate four general second-order dual-
ity models and prove weak, strong, and strict converse duality theorems under
a great variety of generalized (F , b, φ, ρ, θ)-sounivexity hypotheses. We con-
tinue our discussion of duality in Section 4 where we use another partitioning
method and construct four additional generalized duality models and obtain
several duality results under various generalized (F , b, φ, ρ, θ)-sounivexity as-
sumptions. In fact, each one of the eight duality models discussed in Sections
3 and 4 is a family of dual problems for (P ) whose members can easily be iden-
tified by appropriate choices of certain sets and functions. Finally, in Section
5 we summarize our main results and also point out some further research op-
portunities arising from certain modifications of the principal problem model
studied in this paper.

It is evident that all the second-order duality results obtained for (P ) are
also applicable, when appropriately specialized, to the following five classes
of problems with single and multiple objective functions, which are particular
cases of (P ):

(P1) Minimize
x∈F

F1(x) + ‖A1x‖a(1),

where F (assumed to be nonempty) is the feasible set of (P ), that is,

F = {x ∈ X : Gj(x) + ‖Bjx‖b(j) ≦ 0, j ∈ q, Hk(x) = 0, k ∈ r};

(P2) Minimize
x∈G

(

F1(x) + 〈x,R1x〉
1/2, . . . , Fp(x) + 〈x,Rpx〉

1/2
)

;

subject to

Gj(x) + 〈x, Sjx〉
1/2 ≦ 0, j ∈ q, Hk(x) = 0, k ∈ r, x ∈ X,

where Ri, i ∈ p, and Sj , j ∈ q, are n × n symmetric positive semidefinite
matrices;

(P3) Minimize
x∈G

F1(x) + 〈x,R1x〉
1/2,



730 G. J. ZALMAI

where G is the feasible set of (P2), that is,

G = {x ∈ X : Gj(x) + 〈x, Sjx〉
1/2 ≦ 0, j ∈ q, Hk(x) = 0, k ∈ r};

(P4) Minimize
x∈H

(

F1(x), . . . , Fp(x)
)

;

(P5) Minimize
x∈H

F1(x),

where H = {x ∈ X : Gj(x) ≦ 0, j ∈ q, Hk(x) = 0, k ∈ r}.
The problems (P2) and (P3) are special cases of (P ) and (P1), respectively,

which are obtained by choosing ‖ · ‖a(i), i ∈ p, and ‖ · ‖b(j), j ∈ q, to be the

ℓ2-norm ‖ · ‖2, and defining Ri = AT
i Ai, i ∈ p, and Sj = BT

j Bj , j ∈ q.
Since in most cases the duality results established for (P ) can easily be

modified and restated for each one of the above five problems, we shall not
state them explicitly.

Optimization problems containing norms arise naturally in many areas of the
decision sciences, applied mathematics, and engineering. They are encountered
most frequently in facility location problems, approximation theory, and engi-
neering design. A number of these problems have already been investigated in
the related literature. Likewise, optimization problems involving square roots
of positive semidefinite quadratic forms have arisen in stochastic programming,
multifacility location problems, and portfolio selection problems, among oth-
ers. A fairly extensive list of references pertaining to several aspects of these
two classes of problems is given in [40].

2. Preliminaries

In this section, we define some new classes of generalized second-order uni-
vex functions, called sounivex for short, which will be utilized for formulating
and proving our duality theorems in the sequel. They contain as special cases a
fairly large number of generalized convex functions, including, of course, univex
functions [12], proposed previously and used for establishing various duality re-
sults for several types of nonlinear programming problems. In particular, they
may be viewed as further extensions of the second-order generalized convex
functions defined in [3] where the reader will also find numerous references
dealing with many kinds of generalized convex functions.

Let x∗ ∈ Rn and assume that the function f : X → R is twice differentiable
at x∗.

Definition 2.1. The function f is said to be (strictly) (F , b, φ, ρ, θ)-sounivex
at x∗ if there exist functions b : X × X → R+\{0} ≡ (0,∞), φ : R → R, ρ :
X ×X → R, θ : X ×X → Rn, and a sublinear function F(x, x∗; ·) : Rn → R
such that for each x ∈ X(x 6= x∗) and z ∈ Rn,

φ
(

f(x)−f(x∗)+
1

2
〈z,∇2f(x∗)z〉

)

(>) ≧ F
(

x, x∗; b(x, x∗)[∇f(x∗) +∇2f(x∗)z]
)
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+ ρ(x, x∗)‖θ(x, x∗)‖2,

where ‖ · ‖ is a norm on Rn.

Definition 2.2. The function f is said to be (strictly) (F , b, φ, ρ, θ)-pseudoso-
univex at x∗ if there exist functions b : X × X → R+\{0}, φ : R → R, ρ :
X ×X → R, θ : X ×X → Rn, and a sublinear function F(x, x∗; ·) : Rn → R
such that for each x ∈ X(x 6= x∗) and z ∈ Rn,

F
(

x, x∗; b(x, x∗)[∇f(x∗) +∇2f(x∗)z]
)

≧ −ρ(x, x∗)‖θ(x, x∗)‖2

⇒ φ
(

f(x)− f(x∗) +
1

2
〈z,∇2f(x∗)z〉

)

(>) ≧ 0.

Definition 2.3. The function f is said to be (prestrictly) (F , b, φ, ρ, θ)-quasi-
sounivex at x∗ if there exist functions b : X ×X → R+\{0}, φ : R → R, ρ :
X ×X → R, θ : X ×X → Rn, and a sublinear function F(x, x∗; ·) : Rn → R
such that for each x ∈ X and z ∈ Rn,

φ
(

f(x)− f(x∗) +
1

2
〈z,∇2f(x∗)z〉

)

(<) ≦ 0

⇒ F
(

x, x∗; b(x, x∗)[∇f(x∗) +∇2f(x∗)z]
)

≦ −ρ(x, x∗)‖θ(x, x∗)‖2.

From the above definitions it is clear that if f is (F , b, φ, ρ, θ)-sounivex at x∗,
then it is both (F , b, φ, ρ, θ)-pseudosounivex and (F , b, φ, ρ, θ)-quasisounivex at
x∗, if f is (F , b, φ, ρ, θ)-quasisounivex at x∗, then it is prestrictly (F , b, φ, ρ, θ)-
quasisounivex at x∗, and if f is strictly (F , b, φ, ρ, θ)-pseudosounivex at x∗,
then it is (F , b, φ, ρ, θ)-quasisounivex at x∗.

In the proofs of the duality theorems, sometimes it may be more conve-
nient to use certain alternative but equivalent forms of the above definitions.
These are obtained by considering the contrapositive statements. For example,
(F , b, φ, ρ, θ)-quasisounivexity can be defined in the following equivalent way:
f is said to be (F , b, φ, ρ, θ)-quasisounivex at x∗ if there exist functions b :
X × X → R+\{0}, φ : R → R, ρ : X × X → R, θ : X × X → Rn, and a
sublinear function F(x, x∗; ·) : Rn → R such that for each x ∈ X and z ∈ Rn,

F
(

x, x∗; b(x, x∗)[∇f(x∗) +∇2f(x∗)z]
)

> −ρ(x, x∗)‖θ(x, x∗)‖2

⇒ φ
(

f(x)− f(x∗) +
1

2
〈z,∇2f(x∗)z〉

)

> 0.

Needless to say that the new classes of generalized convex functions specified
in Definitions 2.1-2.3 contain a great variety of special cases that can easily be
identified by appropriate choices of the functions F , b, φ, ρ, and θ.

In the remainder of this section, we recall a set of necessary efficiency condi-
tions for (P ) which will play an important role in the construction and analysis
of the dual problems that will be discussed in this paper. We begin by introduc-
ing a consistent notation for vector inequalities. For a, b ∈ Rm, the following
order notation will be used: a ≧ b if and only if ai ≧ bi for all i ∈ m; a > b if
and only if ai ≧ bi for all i ∈ m, but a 6= b; a > b if and only if ai > bi for all
i ∈ m; and a � b is the negation of a > b.
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Consider the multiobjective problem

(P ∗) Minimize
x∈X

f(x) = (f1(x), . . . , fp(x)),

where fi, i ∈ p, are real-valued functions defined on the set X .
An element x◦ ∈ X is said to be an efficient (Pareto optimal, nondominated,

noninferior) solution of (P ∗) if there exists no x ∈ X such that f(x) 6 f(x◦).
The following necessary efficiency result will be needed in the sequel for

proving strong duality theorems.

Theorem 2.1 ([41]). Let x∗ be a normal efficient solution of (P), let λ∗i =
ϕi(x

∗), i ∈ p, and assume that the functions fi, gi, i ∈ p, Gj , j ∈ q, and

Hk, k ∈ r are continuously differentiable at x∗. Then there exist u∗ ∈ U, v∗ ∈
Rq

+, w
∗ ∈ Rr, α∗i ∈ Rmi , i ∈ p, and β∗j ∈ Rnj , j ∈ q, such that

p
∑

i=1

u∗i [∇Fi(x
∗) +AT

i α
∗i] +

q
∑

j=1

v∗j [∇Gj(x
∗) +BT

j β
∗j ] +

r
∑

k=1

w∗
k∇Hk(x

∗) = 0,

v∗j [Gj(x
∗) + ‖Bjx

∗‖b(j)] = 0, j ∈ q,

‖α∗i‖∗a(i) ≦ 1, i ∈ p,

‖β∗j‖∗b(j) ≦ 1, j ∈ q,

〈α∗i, Aix
∗〉 = ‖Aix

∗‖a(i), i ∈ p,

〈β∗j , Bjx
∗〉 = ‖Bjx

∗‖b(j), j ∈ q,

where Rq
+ = {v ∈ Rq : v ≧ 0}, U = {u ∈ Rp : u > 0,

∑p
i=1 ui = 1}, and ‖ · ‖∗a

is the dual to the norm ‖ · ‖a, that is, ‖δ‖∗a = max
‖ξ‖a=1

|〈δ, ξ〉|.

In the remainder of this paper, we shall assume that the functions Fi, i ∈ p,
Gj , j ∈ q, and Hk, k ∈ r, are twice continuously differentiable on the open set
X .

3. Duality model I

In this section, we discuss four families of second-order duality models and
establish appropriate duality results under various generalized (F , b, φ, ρ, θ)-
sounivexity hypotheses imposed on certain combinations of the problem func-
tions. This is accomplished by employing a certain partitioning scheme which
was originally proposed in [30] for the purpose of constructing generalized dual
problems for nonlinear programming problems. For this we need some addi-
tional notation.

Let {J0, J1, . . . , Jm} and {K0,K1, . . . ,Km} be partitions of the index sets q
and r, respectively; thus, Jµ ⊆ q for each µ ∈ m ∪ {0}, Jµ ∩ Jν = ∅ for each
µ, ν ∈ m ∪ {0} with µ 6= ν, and ∪m

µ=0Jµ = q. Obviously, similar properties

hold for {K0,K1, . . . ,Km}. Moreover, if m1 and m2 are the numbers of the
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partitioning sets of q and r, respectively, then m = max{m1,m2} and Jµ = ∅
or Kµ = ∅ for µ > min{m1,m2}

In addition, we use the real-valued functions Φi(·, v, w, α, β), i ∈ p, Φ(·, u,

v, w, α, β), and Λt(·, v, w) defined, for fixed u, v, w, α = (α1, . . . , αp), and β =
(β1, . . . , βq), on X as follows:

Φi(x, v, w, α, β) = Fi(x) + 〈αi, Aix〉+
∑

j∈J0

vj [Gj(x) + 〈βj , Bjx〉]

+
∑

k∈K0

wkHk(x), i ∈ p,

Φ(x, u, v, w, α, β) =

p
∑

i=1

ui[Fi(x) + 〈αi, Aix〉] +
∑

j∈J0

vj [Gj(x)

+ 〈βj , Bjx〉] +
∑

k∈K0

wkHk(x),

Λt(x, v, w, β) =
∑

j∈Jt

vj [Gj(x) + 〈βj , Bjx〉] +
∑

k∈Kt

wkHk(x), t ∈ m.

Making use of the sets and functions defined above, we can state our general
second-order duality models as follows:

(CI) Maximize ξI(y, z, u, v, w, α, β) =
(

ξI1 (y, z, u, v, w, α, β), . . . ,

ξIp(y, z, u, v, w, α, β)
)

subject to
p

∑

i=1

ui[∇Fi(y) +AT
i α

i] +

q
∑

j=1

vj [∇Gj(y) +BT
j β

j ] +

r
∑

k=1

wk∇Hk(y)(3.1)

+
[

p
∑

i=1

ui∇
2Fi(y) +

q
∑

j=1

vj∇
2Gj(y) +

r
∑

k=1

wk∇
2Hk(y)

]

z = 0,

∑

j∈Jt

vj [Gj(y) + ‖Bjy‖b(j)] +
∑

k∈Kt

wkHk(y)(3.2)

−
1

2

〈

z,
[

∑

j∈Jt

vj∇
2Gj(y) +

∑

k∈Kt

wk∇
2Hk(y)

]

z
〉

≧ 0, t ∈ m,

(3.3) ‖αi‖∗a(i) ≦ 1, i ∈ p,

(3.4) ‖βj‖∗b(j) ≦ 1, j ∈ q,

(3.5) 〈αi, Aiy〉 = ‖Aiy‖a(i), i ∈ p,

(3.6) 〈βj , Bjy〉 = ‖Bjy‖b(j), j ∈ q,
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(3.7)
y ∈ X, z ∈ Rn, u ∈ U, v ∈ Rq

+, w ∈ Rr, αi ∈ Rmi , i ∈ p, βj ∈ Rnj , j ∈ q,

where

ξIi (y, z, u, v, w, α, β)

= Fi(y) + ‖Aiy‖a(i) +
∑

j∈J0

vj [Gj(y) + ‖Bjy‖b(j)] +
∑

k∈K0

wkHk(y)

−
1

2

〈

z,
[

∇2Fi(y) +
∑

j∈J0

vj∇
2Gj(y) +

∑

k∈K0

wk∇
2Hk(y)

]

z
〉

, i ∈ p;

(C̃I) Maximize ξI(y, z, u, v, w, α, β) =
(

ξI1 (y, z, u, v, w, α, β), . . . ,

ξIp(y, z, u, v, w, α, β)
)

subject to (3.2)-(3.7) and

F
(

x, y;

p
∑

i=1

ui[∇Fi(y) +AT
i α

i] +

q
∑

j=1

vj [∇Gj(y) +BT
j β

j ]

(3.8)

+

r
∑

k=1

wk∇Hk(y) +
[

p
∑

i=1

ui∇
2Fi(y) +

q
∑

j=1

vj∇
2Gj(y) +

r
∑

k=1

wk∇
2Hk(y)

]

z
)

≧ 0 for all x ∈ F,

where F(x, y; ·) is a sublinear function from Rn to R;

(DI) Maximize ψI(y, z, u, v, w, α, β) =
(

ψI
1(y, z, u, v, w, α, β), . . . ,

ψI
p(y, z, u, v, w, α, β)

)

subject to
p

∑

i=1

ui[∇Fi(y) +AT
i α

i] +

q
∑

j=1

vj [∇Gj(y) +BT
j β

j ] +
r

∑

k=1

wk∇Hk(y)(3.9)

+
[

p
∑

i=1

ui∇
2Fi(y) +

q
∑

j=1

vj∇
2Gj(y) +

r
∑

k=1

wk∇
2Hk(y)

]

z = 0,

∑

j∈Jt

vj [Gj(y) + 〈βj , Bjy〉] +
∑

k∈Kt

wkHk(y)(3.10)

−
1

2

〈

z,
[

∑

j∈Jt

vj∇
2Gj(y) +

∑

k∈Kt

wk∇
2Hk(y)

]

z
〉

≧ 0, t ∈ m,

(3.11) ‖αi‖∗a(i) ≦ 1, i ∈ p,

(3.12) ‖βj‖∗b(j) ≦ 1, j ∈ q,
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(3.13)
y ∈ X, z ∈ Rn, u ∈ U, v ∈ Rq

+, w ∈ Rr, αi ∈ Rmi , i ∈ p, βj ∈ Rnj , j ∈ q,

where

ψI
i (y, z, u, v, w, α, β)

= Fi(y) + 〈αi, Aiy〉+
∑

j∈J0

vj [Gj(y) + 〈βj , Bjy〉] +
∑

k∈K0

wkHk(y)

−
1

2

〈

z,
[

∇2Fi(y) +
∑

j∈J0

vj∇
2Gj(y) +

∑

k∈K0

wk∇
2Hk(y)

]

z
〉

, i ∈ p;

(D̃I) Maximize ψI(y, z, u, v, w, α, β) =
(

ψI
1(y, z, u, v, w, α, β), . . . ,

ψI
p(y, z, u, v, w, α, β)

)

subject to (3.8) and (3.10)-(3.13).

A careful examination of the structures and properties of (CI) and (C̃I)
(as well as the proofs of the weak and strong duality theorems for (P ) - (DI)
given below), will readily reveal the fact that the constraints (3.5) and (3.6) are
superfluous and their omission will not invalidate the duality relations between
(P ) and (CI), and (P ) and (C̃I). More specifically, if (3.5) and (3.6) are deleted

and the remaining constraints of (CI) and (C̃I) are modified accordingly, then

one obtains the reduced versions (DI) and (D̃I).

Comparing (DI) and (D̃I), we see that (D̃I) is relatively more general
than (DI) in the sense that any feasible solution of (DI) is also feasible for

(D̃I), but the converse is not necessarily true. Furthermore, we observe that
(3.9) is a system of n equations, whereas (3.8) is a single inequality. Clearly,

from a computational point of view, (DI) is preferable to (D̃I) because of the
dependence of (3.8) on the feasible set of (P ).

Despite these apparent differences, it turns out that the statements and
proofs of all the duality theorems for (P ) - (DI) and (P ) - (D̃I) are almost
identical and, therefore, we shall consider only the pair (P ) - (DI). Similarly,
it is easily seen that all of the duality theorems established for (P ) - (DI) can

readily be altered and restated for (P ) - (CI) and (P ) - (C̃I).
In the sequel, we shall make frequent use of the following well-known gener-

alized Cauchy inequality.

Lemma 3.1 ([19]). For each a, b ∈ Rm, 〈a, b〉 ≦ ‖a‖∗‖b‖.

The next two theorems show that (DI) is a dual problem for (P ).

Theorem 3.1 (Weak Duality). Let x and s ≡ (y, z, u, v, w, α, β) be arbitrary

feasible solutions of (P) and (DI), respectively, and assume that any one of the

following four sets of hypotheses is satisfied:

(a) (i) Φ(·, u, v, w, α, β) is (F , b, φ̄, ρ̄, θ)-pseudosounivex at y and φ̄(a) ≧
0 ⇒ a ≧ 0;
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(ii) for each t ∈ m, Λt(·, v, w, β) is (F , b, φ̃t, ρ̃t, θ)-quasisounivex at y,

φ̃t is increasing, and φ̃t(0) = 0;
(iii) ρ̄(x, y) +

∑m
t=1 ρ̃t(x, y) ≧ 0;

(b) (i) Φ(·, u, v, w, α, β) is prestrictly (F , b, φ̄, ρ̄, θ)-quasisounivex at y and

φ̄(a) ≧ 0 ⇒ a ≧ 0;

(ii) for each t ∈ m, Λt(·, v, w, β) is (F , b, φ̃t, ρ̃t, θ)-quasisounivex at

y, φ̃t is increasing, and φ̃t(0) = 0;
(iii) ρ̄(x, y) +

∑m
t=1 ρ̃t(x, y) > 0;

(c) (i) Φ(·, u, v, w, α, β) is prestrictly (F , b, φ̄, ρ̄, θ)-quasisounivex at y, φ̄

is strictly increasing, and φ̄(0) = 0;

(ii) for each t ∈ m, Λt(·, v, w, β) is strictly (F , b, φ̃t, ρ̃t, θ)-pseudoso-
univex at y, φ̃t is increasing, and φ̃t(0) = 0;

(iii) ρ̄(x, y) +
∑m

t=1 ρ̃t(x, y) ≧ 0;
(d) (i) Φ(·, u, v, w, α, β) is prestrictly (F , b, φ̄, ρ̄, θ)-quasisounivex at y, φ̄

is strictly increasing, and φ̄(0) = 0;

(ii) for each t ∈ m1, Λt(·, v, w, β) is (F , b, φ̃t, ρ̃t, θ)-quasisounivex at

y, for each t ∈ m2 6= ∅, Λt(·, v, w, β) is strictly (F , b, φ̃t, ρ̃t, θ)-

pseudosounivex at y, and for each t ∈ m, φ̃t is increasing and

φ̃t(0) = 0, where {m1,m2} is a partition of m;

(iii) ρ̄(x, y) +
∑m

t=1 ρ̃t(x, y) ≧ 0.

Then ϕ(x) 
 ψI(s).

Proof. (a) It is clear that (3.9) can be expressed as follows:

p
∑

i=1

ui[∇Fi(y) +AT
i α

i] +
∑

j∈J0

vj [∇Gj(y) +BT
j β

j ] +
∑

k∈K0

wk∇Hk(y)(3.14)

+
[

p
∑

i=1

ui∇
2Fi(y) +

∑

j∈J0

vj∇
2Gj(y) +

∑

k∈K0

wk∇
2Hk(y)

]

z

+

m
∑

t=1

{

∑

j∈Jt

vj [∇Gj(y) +BT
j β

j ] +
∑

k∈Kt

wk∇Hk(y)

+
[

∑

j∈Jt

vj∇
2Gj(y) +

∑

k∈Kt

wk∇
2Hk(y)

]

z
}

= 0.

Since for each t ∈ m,

Λt(x, v, w, β) =
∑

j∈Jt

vj [Gj(x) + 〈βj , Bjx〉] +
∑

k∈Kt

wkHk(x)

≦
∑

j∈Jt

vj [Gj(x) + ‖βj‖∗b(j)‖Bjx‖b(j)] +
∑

k∈Kt

wkHk(x)

(by Lemma 3.1 and the nonnegativity of v)
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≦
∑

j∈Jt

vj [Gj(x) + ‖Bjx‖b(j)] +
∑

k∈Kt

wkHk(x) (by (3.12))

≦ 0 (by the primal feasibility of x)

≦
∑

j∈Jt

vj [Gj(y) + 〈βj , Bjy〉] +
∑

k∈Kt

wkHk(y)

−
1

2

〈

z,
[

∑

j∈Jt

vj∇
2Gj(y) +

∑

k∈Kt

wk∇
2Hk(y)

]

z
〉

(by (3.10))

= Λt(y, v, w, β) −
1

2

〈

z,∇2Λt(y, v, w, β)z
〉

,

and so

φ̃t

(

Λt(x, v, w, β) − Λt(y, v, w, β) +
1

2

〈

z,∇2Λt(y, v, w, β)z
〉

)

≦ 0,

it follows from (ii) that

F
(

x, y; b(x, y)
{

∑

j∈Jt

vj [∇Gj(y) +BT
j β

j ] +
∑

k∈Kt

wk∇Hk(y)

+
[

∑

j∈Jt

vj∇
2Gj(y) +

∑

k∈Kt

wk∇
2Hk(y)

]

z
})

≦ −ρ̃t(x, y)‖θ(x, y)‖
2.

Summing over t ∈ m and using the sublinearity of F(x, y; ·), we obtain

F
(

x, y; b(x, y)

m
∑

t=1

{

∑

j∈Jt

vj [∇Gj(y) +BT
j β

j ] +
∑

k∈Kt

wk∇Hk(y)(3.15)

+
[

∑

j∈Jt

vj∇
2Gj(y) +

∑

k∈Kt

wk∇
2Hk(y)

]

z
})

< −
m
∑

t=1

ρ̃t(x, y)‖θ(x, y)‖
2.

Combining (3.14) and (3.15), and using (iii) we get

F
(

x, y; b(x, y)
{

p
∑

i=1

ui[∇Fi(y) +AT
i α

i] +
∑

j∈J0

vj [∇Gj(y) +BT
j β

j ]

+
∑

k∈K0

wk∇Hk(y)

+
[

p
∑

i=1

ui∇
2Fi(y) +

∑

j∈J0

vj∇
2Gj(y) +

∑

k∈K0

wk∇
2Hk(y)

]

z
})

≧

m
∑

t=1

ρ̃t(x, y)‖θ(x, y)‖
2 ≧ −ρ̄(x, y)‖θ(x, y)‖2,
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which by virtue of (i) implies that

φ̄
(

Φ(x, u, v, w, α, β) − Φ(y, λ, u, v, w, α, β) +
1

2

〈

z,∇2Φ(y, u, v, w, α, β)z
〉

)

≧ 0.

But φ̄(a) ≧ 0 ⇒ a ≧ 0, and hence

Φ(x, u, v, w, α, β) ≧ Φ(y, u, v, w, α, β)−
1

2

〈

z,∇2Φ(y, u, v, w, α, β)z
〉

=

p
∑

i=1

uiψ
I
i (s) (since u > 0 and

∑p
i=1 ui = 1).

Therefore, we have
p

∑

i=1

uiψ
I
i (s)

≦

p
∑

i=1

ui[Fi(x) + ‖αi‖∗a(i)‖Aix‖a(i)] +
∑

j∈J0

vj [Gj(x) + ‖βj‖∗b(j)‖Bjx‖b(j)]

(by Lemma 3.1 and the primal feasibility of x)

≦

p
∑

i=1

ui[Fi(x) + ‖Aix‖a(i)] +
∑

j∈J0

vj [Gj(x) + ‖Bjx‖b(j)]

(by (3.11) and (3.12))

≦

p
∑

i=1

ui[Fi(x) + ‖Aix‖a(i)] (by the primal feasibility of x)

=

p
∑

i=1

uiϕi(x).

Since u > 0 the above inequality implies that ϕ(x) 
 ψI(s).
(b) The proof is similar to that of part (a).
(c) Suppose to the contrary that ϕ(x) 6 ψI(s). This implies that for each

i ∈ p,

Fi(x) + ‖Aix‖a(i)

≦ Fi(y) + 〈αi, Aiy〉+
∑

j∈J0

vj [Gj(y) + 〈βj , Bjy〉] +
∑

k∈K0

wkHk(y)

−
1

2

〈

z,
[

∇2Fi(y) +
∑

j∈J0

vj∇
2Gj(y) +

∑

k∈K0

wk∇
2Hk(y)

]

z
〉

,

with strict inequality holding for at least one index ℓ ∈ p. Since u > 0 and
∑p

i=1 ui = 1, the above inequalities yield

p
∑

i=1

ui[Fi(x) + ‖Aix‖a(i)](3.16)
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<

p
∑

i=1

ui[Fi(y) + 〈αi, Aiy〉] +
∑

j∈J0

vj [Gj(y) + 〈βj , Bjy〉]

+
∑

k∈K0

wkHk(y)

−
1

2

〈

z,
[

p
∑

i=1

ui∇
2Fi(y)+

∑

j∈J0

vj∇
2Gj(y)+

∑

k∈K0

wk∇
2Hk(y)

]

z
〉

.

Keeping in mind that v ≧ 0, we see that

Φ(x, u, v, w, α, β)

=

p
∑

i=1

ui[Fi(x) + 〈αi, Aix〉] +
∑

j∈J0

vj [Gj(x) + 〈βj , Bjx〉] +
∑

k∈K0

wkHk(x)

≦

p
∑

i=1

ui[Fi(x) + ‖αi‖∗a(i)‖Aix‖a(i)] +
∑

j∈J0

vj [Gj(x) + ‖βj‖∗b(j)‖Bjx‖b(j)]

(by Lemma 3.1 and the primal feasibility of x)

≦

p
∑

i=1

ui[Fi(x) + ‖Aix‖a(i)] +
∑

j∈J0

vj [Gj(x) + ‖Bjx‖b(j)]

(by (3.11) and (3.12))

≦

p
∑

i=1

ui[Fi(x) + ‖Aix‖a(i)] (by the primal feasibility of x)

<

p
∑

i=1

ui[Fi(y) + 〈αi, Aiy〉] +
∑

j∈J0

vj [Gj(y) + 〈βj , Bjy〉] +
∑

k∈K0

wkHk(y)

−
1

2

〈

z,
[

p
∑

i=1

ui∇
2Fi(y) +

∑

j∈J0

vj∇
2Gj(y) +

∑

k∈K0

wk∇
2Hk(y)

]

z
〉

(by (3.16))

= Φ(y, u, v, w, α, β)−
1

2

〈

z,∇2Φ(y, u, v, w, α, β)z
〉

,

and so

φ̄
(

Φ(x, u, v, w, α, β) − Φ(y, u, v, w, α, β) +
1

2

〈

z,∇2Φ(y, u, v, w, α, β)z
〉

)

< 0,

which in view of (i) implies that

F
(

x, y; b(x, y)
{

p
∑

i=1

ui[∇Fi(y) +AT
i α

i](3.17)

+
∑

j∈J0

vj [∇Gj(y) +BT
j β

j ] +
∑

k∈K0

wk∇Hk(y)
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+
[

p
∑

i=1

ui∇
2Fi(y) +

∑

j∈J0

vj∇
2Gj(y) +

∑

k∈K0

wk∇
2Hk(y)

]

z
})

≦ − ρ̄(x, y)‖θ(x, y)‖2.

Proceeding as in the proof of Theorem 3.1, we obtain

φ̃t

(

Λt(x, v, w, β) − Λt(y, v, w, β) +
1

2

〈

z,∇2Λt(y, v, w, β)z
〉

)

≦ 0,

which in view of (ii) implies that

F
(

x, y; b(x, y)

m
∑

t=1

{

∑

j∈Jt

vj [∇Gj(y) +BT
j β

j ] +
∑

k∈Kt

wk∇Hk(y)

+
[

∑

j∈Jt

vj∇
2Gj(y) +

∑

k∈Kt

wk∇
2Hk(y)

]

z
})

< −
m
∑

t=1

ρ̃t(x, y)‖θ(x, y)‖
2,

which when combined with (3.14), results in

F
(

x, y; b(x, y)
{

p
∑

i=1

ui[∇Fi(y) +AT
i α

i]

+
∑

j∈J0

vj [∇Gj(y) +BT
j β

j ] +
∑

k∈K0

wk∇Hk(y)

+
[

p
∑

i=1

ui∇
2Fi(y) +

∑

j∈J0

vj∇
2Gj(y) +

∑

k∈K0

wk∇
2Hk(y)

]

z
})

>

m
∑

t=1

ρ̃t(x, y)‖θ(x, y)‖
2.

In view of (iii), this inequality contradicts (3.17). Hence, ϕ(x) 
 ψI(s).
(d) The proof is similar to that of part (c). �

Theorem 3.2 (Strong Duality). Let x∗ be a normal efficient solution of (P)
and assume that any one of the four sets of conditions set forth in Theorem

3.1 is satisfied for all feasible solutions of (DI). Then there exist u∗ ∈ U, v∗ ∈
Rq

+, w
∗ ∈ Rr, α∗i ∈ Rmi , i ∈ p, and β∗j ∈ Rnj , j ∈ q, such that s∗ ≡ (x∗, z∗ =

0, u∗, v∗, w∗, α∗, β∗) is an efficient solution of (DI) and ϕ(x∗) = ψI(s∗).

Proof. (a) Since x∗ is a normal efficient solution of (P ), by Theorem 2.1, there
exist u∗, v∗, w∗, α∗i, and β∗j , as specified above, such that s∗, is a feasible
solution of (DI). If it were not efficient, then there would exist a feasible

solution ŝ ≡ (x̂, ẑ, û, v̂, ŵ, α̂, β̂) of (DI) such that ψI(ŝ) > ψI(s∗). But ψI(s∗) =
ϕ(x∗) and hence ψI(ŝ) > ϕ(x∗), which contradicts Theorem 3.1. Therefore, we
conclude that s∗ is an efficient solution of (DI).
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(b)-(d): The proofs are similar to that of part (a). �

We also have the following converse duality result for (P ) and (DI).

Theorem 3.3 (Strict Converse Duality). Let x∗ and s̃ ≡ (x̃, z̃, ũ, ṽ, w̃, α̃, β̃) be
arbitrary feasible solutions of (P) and (DI), respectively, such that

(3.18)

p
∑

i=1

ũiϕi(x
∗) ≦

p
∑

i=1

ũiψ
I
i (s̃).

Furthermore, assume that any one of the following four sets of conditions holds:
(a) The assumptions specified in part (a) of Theorem 3.1 are satisfied for the

feasible solution s̃ of (DI), the function Φ(·, ũ, ṽ, w̃, α̃, β̃) is strictly (F , b, φ̄, ρ̄, θ)-
pseudosounivex at x̃, and φ̄(a) > 0 ⇒ a > 0.

(b) The assumptions specified in part (b) of Theorem 3.1 are satisfied for

the feasible solution s̃ of (DI), the function Φ(·, ũ, ṽ, w̃, α̃, β̃) is (F , b, φ̄, ρ̄, θ)-
quasisounivex at x̃, and φ̄(a) > 0 ⇒ a > 0.

(c) The assumptions specified in part (c) of Theorem 3.1 are satisfied for the

feasible solution s̃ of (DI) and the function Φ(·, ũ, ṽ, w̃, α̃, β̃) is (F , b, φ̄, ρ̄, θ)-
quasisounivex at x̃.

(d) The assumptions specified in part (d) of Theorem 3.1 are satisfied for the

feasible solution s̃ of (DI) and the function Φ(·, ũ, ṽ, w̃, α̃, β̃) is (F , b, φ̄, ρ̄, θ)-
quasisounivex at x̃. Then x̃ = x∗ and ϕ(x∗) = ψI(s̃).

Proof. (a) Suppose to the contrary that x̃ 6= x∗. Now proceeding as in the
proof of part (a) of Theorem 3.1 (with x replaced by x∗ and s by s̃), we arrive
at the inequality

F
(

x∗, x̃; b(x∗, x̃)
{

p
∑

i=1

ũi[∇Fi(x̃) +AT
i α̃

i] +
∑

j∈J0

ṽj [∇Gj(x̃) +BT
j β̃

j ]

+
∑

k∈K0

w̃k∇Hk(x̃)+
[

p
∑

i=1

ũi∇
2Fi(x̃)+

∑

j∈J0

ṽj∇
2Gj(x̃)+

∑

k∈K0

w̃k∇
2Hk(x̃)

]

z̃
})

≧− ρ̄(x∗, x̃)‖θ(x∗, x̃)‖2,

which by virtue of our strict (F , b, φ̄, ρ̄, θ)-pseudosounivexity assumption im-
plies that

φ̄
(

Φ(x∗, ũ, ṽ, w̃, α̃, β̃)− Φ(x̃, ũ, ṽ, w̃, α̃, β̃) +
1

2

〈

z̃,∇2Φ(x̃, ũ, ṽ, w̃, α̃, β̃)z̃
〉

)

> 0.

But φ̄(a) > 0 ⇒ a > 0, and hence we get

Φ(x∗, ũ, ṽ, w̃, α̃, β̃) > Φ(x̃, ũ, ṽ, w̃, α̃, β̃)−
1

2

〈

z̃,∇2Φ(x̃, ũ, ṽ, w̃, α̃, β̃)z̃
〉

.
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Following the steps used in the proof of part (a) of Theorem 3.1, it can be
shown that this inequality yields

p
∑

i=1

ũiϕi(x
∗) >

p
∑

i=1

ũiψ
I
i (s̃),

which contradicts (3.18). Hence x̃ = x∗ and ϕ(x∗) = ψI(s̃).
(b)-(d): The proofs are similar to that of part (a). �

Theorem 3.4 (Weak Duality). Let x and s ≡ (y, z, u, v, w, α, β) be arbitrary

feasible solutions of (P) and (DI), respectively, and assume that any one of the

following seven sets of hypotheses is satisfied:

(a) (i) for each i ∈ p, Φi(·, v, w, α, β) is strictly (F , b, φ̄i, ρ̄i, θ)-pseudoso-

univex at y, φ̄i is increasing, and φ̄i(0) = 0;

(ii) for each t ∈ m, Λt(·, v, w, β) is (F , b, φ̃t, ρ̃t, θ)-quasisounivex at y,

φ̃t is increasing, and φ̃t(0) = 0;
(iii)

∑p
i=1 uiρ̄i(x, y) +

∑m
t=1 ρ̃t(x, y) ≧ 0;

(b) (i) for each i ∈ p, Φi(·, v, w, α, β) is (F , b, φ̄i, ρ̄i, θ)-quasisounivex at

y, φ̄i is increasing, and φ̄i(0) = 0;

(ii) for each t ∈ m, Λt(·, v, w, β) is strictly (F , b, φ̃t, ρ̃t, θ)-pseudoso-

univex at y, φ̃t is increasing, and φ̃t(0) = 0;
(iii)

∑p
i=1 uiρ̄i(x, y) +

∑m
t=1 ρ̃t(x, y) ≧ 0;

(c) (i) for each i ∈ p, Φi(·, v, w, α, β) is (F , b, φ̄i, ρ̄i, θ)-quasisounivex at

y, φ̄i is increasing, and φ̄i(0) = 0;

(ii) for each t ∈ m, Λt(·, v, w, β) is (F , b, φ̃t, ρ̃t, θ)-quasisounivex at y,

φ̃t is increasing, and φ̃t(0) = 0;
(iii)

∑p
i=1 uiρ̄i(x, y) +

∑m
t=1 ρ̃t(x, y) > 0;

(d) (i) for each i ∈ p1, Φi(·, v, w, α, β) is strictly (F , b, φ̄i, ρ̄i, θ)-pseudo-

sounivex at y, for each i ∈ p2, Φi(·, v, w, α, β) is (F , b, φ̄i, ρ̄i, θ)-

quasisounivex at y, and for each i ∈ p, φ̄i is increasing and φ̄i(0) =
0, where {p1, p2} is a partition of p;

(ii) for each t ∈ m, Λt(·, v, w, β) is strictly (F , b, φ̃t, ρ̃t, θ)-pseudoso-

univex at y, φ̃t is increasing, and φ̃t(0) = 0;
(iii)

∑p
i=1 uiρ̄i(x, y) +

∑m
t=1 ρ̃t(x, y) ≧ 0;

(e) (i) for each i ∈ p1 6= ∅, Φi(·, v, w, α, β) is strictly (F , b, φ̄i, ρ̄i, θ)-

pseudosounivex at y, for each i ∈ p2, Φi(·, v, w, α, β) is (F , b, φ̄i,

ρ̄i, θ)-quasisounivex at y, and for each i ∈ p, φ̄i is increasing and

φ̄i(0) = 0, where {p1, p2} is a partition of p;

(ii) for each t ∈ m, Λt(·, v, w, β) is (F , b, φ̃t, ρ̃t, θ)-quasisounivex at y,

φ̃t is increasing, and φ̃t(0) = 0;
(iii)

∑p
i=1 uiρ̄i(x, y) +

∑m
t=1 ρ̃t(x, y) ≧ 0;

(f) (i) for each i ∈ p, Φi(·, v, w, α, β) is (F , b, φ̄i, ρ̄i, θ)-quasisounivex at

y, φ̄i is increasing, and φ̄i(0) = 0;
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(ii) for each t ∈ m1 6= ∅, Λt(·, v, w, β) is strictly (F , b, φ̃t, ρ̃t, θ)-
pseudosounivex at y, for each t ∈ m2, Λt(·, v, w, β) is (F , b, φ̃t, ρ̃t,

θ)-quasisounivex at y, and for each t ∈ m, φ̃t is increasing and

φ̃t(0) = 0, where {m1,m2} is a partition of m;
(iii)

∑p
i=1 uiρ̄i(x, y) +

∑m
t=1 ρ̃t(x, y) ≧ 0;

(g) (i) for each i ∈ p1, Φi(·, v, w, α, β) is strictly (F , b, φ̄i, ρ̄i, θ)-pseudo-

sounivex at y, for each i ∈ p2, Φi(·, v, w, α, β) is (F , b, φ̄i, ρ̄i, θ)-

quasisounivex at y, and for each i ∈ p, φ̄i is increasing and φ̄i(0) =
0, where {p1, p2} is a partition of p;

(ii) for each t ∈ m1, Λt(·, v, w, β) is strictly (F , b, φ̃t, ρ̃t, θ)-pseudoso-
univex at y, for each t ∈ m2, Λt(·, v, w, β) is (F , b, φ̃t, ρ̃t, θ)-quasi-

sounivex at y, and for each t ∈ m, φ̃t is increasing and φ̃t(0) = 0,
where {m1,m2} is a partition of m;

(iii)
∑p

i=1 uiρ̄i(x, y) +
∑m

t=1 ρ̃t(x, y) ≧ 0;
(iv) p1 6= ∅, m1 6= ∅, or

∑p
i=1 uiρ̄i(x, y) +

∑m
t=1 ρ̃t(x, y) > 0.

Then ϕ(x) 
 ψI(s).

Proof. (a) Suppose to the contrary that ϕ(x) 6 ψI(s). This implies that for
each i ∈ p,

(3.19)

Fi(x) + ‖Aix‖a(i)−
{

Fi(y) + 〈αi, Aiy〉+
∑

j∈J0

vj [Gj(y) + 〈βj , Bjy〉]

+
∑

k∈K0

wkHk(y)−
1

2

〈

z,
[

∇2Fi(y) +
∑

j∈J0

vj∇
2Gj(y)+

∑

k∈K0

wk∇
2Hk(y)

]

z
〉}

≦ 0,

with strict inequality holding for at least one index ℓ ∈ p. Keeping in mind

that v ≧ 0, we see that

Φi(x, v, w, α, β)

= Fi(x) + 〈αi, Aix〉+
∑

j∈J0

vj [Gj(x) + 〈βj , Bjx〉] +
∑

k∈K0

wkHk(x)

≦ Fi(x) + ‖αi‖∗a(i)‖Aix‖a(i) +
∑

j∈J0

vj [Gj(x) + ‖βj‖∗b(j)‖Bjx‖b(j)]

(by Lemma 3.1 and the primal feasibility of x)

≦ Fi(x) + ‖Aix‖a(i) +
∑

j∈J0

vj [Gj(x) + ‖Bjx‖b(j)] (by (3.11) and (3.12))

≦ Fi(x) + ‖Aix‖a(i) (by the primal feasibility of x)

≦ Fi(y) + 〈αi, Aiy〉+
∑

j∈J0

vj [Gj(y) + 〈βj , Bjy〉] +
∑

k∈K0

wkHk(y)
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−
1

2

〈

z,
[

∇2Fi(y) +
∑

j∈J0

vj∇
2Gj(y) +

∑

k∈K0

wk∇
2Hk(y)

]

z
〉

(by (3.19))

= Φi(y, v, w, α, β) −
1

2

〈

z,∇2Φi(y, v, w, α, β)z
〉

,

and so

φ̄i

(

Φi(x, v, w, α, β) − Φi(y, v, w, α, β) +
1

2

〈

z,∇2Φi(y, v, w, α, β)z
〉

)

≦ 0,

which in view of (i) implies that for each i ∈ p,

F
(

x, y; b(x, y)
{

∇Fi(y) +AT
i α

i +
∑

j∈J0

vj [∇Gj(y) +BT
j β

j ]

+
∑

k∈K0

wk∇Hk(y) +
[

∇2Fi(y) +
∑

j∈J0

vj∇
2Gj(y) +

∑

k∈K0

wk∇
2Hk(y)

]

z
})

< − ρ̄i(x, y)‖θ(x, y)‖
2.

Since u > 0,
∑p

i=1 ui = 1, and F(x, y; ·) is sublinear, the above inequalities
yield

F
(

x, y; b(x, y)
{

p
∑

i=1

ui[∇Fi(y) +AT
i α

i](3.20)

+
∑

j∈J0

vj [∇Gj(y) +BT
j β

j ] +
∑

k∈K0

wk∇Hk(y)

+
[

p
∑

i=1

ui∇
2Fi(y) +

∑

j∈J0

vj∇
2Gj(y) +

∑

k∈K0

wk∇
2Hk(y)

]

z
})

< −

p
∑

i=1

uiρ̄i(x, y)‖θ(x, y)‖
2.

As seen in the proof of Theorem 3.1, our assumptions in (ii) lead to

F
(

x, y; b(x, y)

m
∑

t=1

{

∑

j∈Jt

vj [∇Gj(y) +BT
j β

j ] +
∑

k∈Kt

wk∇Hk(y)

+
[

∑

j∈Jt

vj∇
2Gj(y) +

∑

k∈Kt

wk∇
2Hk(y)

]

z
})

≦ −
m
∑

t=1

ρ̃t(x, y)‖θ(x, y)‖
2,

which when combined with (3.14), results in

F
(

x, y; b(x, y)
{

p
∑

i=1

ui[∇Fi(y) +AT
i α

i]
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+
∑

j∈J0

vj [∇Gj(y) +BT
j β

j ] +
∑

k∈K0

wk∇Hk(y)

+
[

p
∑

i=1

ui∇
2Fi(y) +

∑

j∈J0

vj∇
2Gj(y) +

∑

k∈K0

wk∇
2Hk(y)

]

z
})

≧

m
∑

t=1

ρ̃t(x, y)‖θ(x, y)‖
2.

In view of (iii), this inequality contradicts (3.20). Hence, ϕ(x) 
 ψI(s).
(b)-(g): The proofs are similar to that of part (a). �

Theorem 3.5 (Strong Duality). Let x∗ be a normal efficient solution of (P)
and assume that any one of the seven sets of conditions set forth in Theorem

3.4 is satisfied for all feasible solutions of (DI). Then there exist u∗ ∈ U, v∗ ∈
Rq

+, w
∗ ∈ Rr, α∗i ∈ Rmi , and β∗j ∈ Rnj , j ∈ q, such that s∗ ≡ (x∗, z∗ =

0, u∗, v∗, w∗, α∗, β∗) is an efficient solution of (DI) and ϕ(x∗) = ψI(s∗).

Proof. The proof is similar to that of Theorem 3.2. �

4. Duality model II

In this section we discuss four additional second-order duality models for (P )
which are different from those presented in the preceding section. These duality
models may be viewed as extensions of the first-order dual problem considered
previously in [35]. In these duality formulations we utilize a partition of p in
addition to those of q and r. In our duality theorems, we impose appropriate
generalized (F , b, φ, ρ, θ)-sounivexity requirements on certain combinations of
the problem functions.

Let {I0, I1, . . . , Iℓ} be a partition of p such that L = {0, 1, 2, . . . , ℓ} ⊆ M =

{0, 1, . . . ,m}, and let the function Πt(·, u, v, w, α, β) : X → R be defined, for
fixed u, v, w, α, and β, by

Πt(x, u, v, w, α, β) =
∑

i∈It

ui[fi(x) + 〈αi, Aix〉] +
∑

j∈Jt

vj [Gj(x) + 〈βj , Bjx〉]

+
∑

k∈Kt

wkHk(x), t ∈ L.

Consider the following dual problems:

(CII) Maximize ξII(y, z, u, v, w, α, β) = (ξII1 (y, z, u, v, w, α, β), . . . ,

ξIIp (y, z, u, v, w, α, β))

subject to (3.1), (3.3)-(3.7), and

∑

j∈Jt

vj [Gj(y) + ‖Bjy‖b(j)] +
∑

k∈Kt

wkHk(y)

(4.1)
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−
1

2

〈

z,
[

∑

i∈It

ui∇
2Fi(y) +

∑

j∈Jt

vj∇
2Gj(y) +

∑

k∈Kt

wk∇
2Hk(y)

]

z
〉

≧ 0, t ∈ L,

∑

j∈Jt

vj [Gj(y) + ‖Bjy‖b(j)] +
∑

k∈Kt

wkHk(y)(4.2)

−
1

2

〈

z,
[

∑

j∈Jt

vj∇
2Gj(y) +

∑

k∈Kt

wk∇
2Hk(y)

]

z
〉

≧ 0, t ∈M\L,

where

ξIIi (y, z, u, v, w, α, β) = Fi(y) + ‖Aiy‖a(i), i ∈ p;

(C̃II) Maximize ξII(y, z, u, v, w, α, β) = (ξII1 (y, z, u, v, w, α, β), . . . ,

ξIIp (y, z, u, v, w, α, β))

subject to (3.3)-(3.8), (4.1), and (4.2);

(DII) Maximize ψII(y, z, u, v, w, α, β) = (ψII
1 (y, z, u, v, w, α, β), . . . ,

ψII
p (y, z, u, v, w, α, β))

subject to

p
∑

i=1

ui[∇Fi(y) +AT
i α

i] +

q
∑

j=1

vj [∇Gj(y) +BT
j β

j ] +

r
∑

k=1

wk∇Hk(y)(4.3)

+
[

p
∑

i=1

ui∇
2Fi(y) +

q
∑

j=1

vj∇
2Gj(y) +

r
∑

k=1

wk∇
2Hk(y)

]

z = 0,

(4.4)
∑

j∈Jt

vj [Gj(y) + 〈βj , Bjy〉] +
∑

k∈Kt

wkHk(y)

−
1

2

〈

z,
[

∑

i∈It

ui∇
2Fi(y)+

∑

j∈Jt

vj∇
2Gj(y)+

∑

k∈Kt

wk∇
2Hk(y)

]

z
〉

≧ 0, t ∈ L,

∑

j∈Jt

vj [Gj(y) + 〈βj , Bjy〉] +
∑

k∈Kt

wkHk(y)(4.5)

−
1

2

〈

z,
[

∑

j∈Jt

vj∇
2Gj(y) +

∑

k∈Kt

wk∇
2Hk(y)

]

z
〉

≧ 0, t ∈M\L,

(4.6) ‖αi‖∗a(i) ≦ 1, i ∈ p,

(4.7) ‖βj‖∗b(j) ≦ 1, j ∈ q,

(4.8) y ∈ X, z ∈ Rn, u ∈ U, v ∈ Rq
+, w ∈ Rr, αi ∈ Rmi , βj ∈ Rnj , j ∈ q,
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where

ψII
i (y, z, u, v, w, α, β) = Fi(y) + 〈αi, Aiy〉, i ∈ p;

(D̃II) Maximize ψII(y, z, u, v, w, α, β) = (ψII
1 (y, z, u, v, w, α, β), . . . ,

ψII
p (y, z, u, v, w, α, β))

subject to (3.8) and (4.4)-(4.8).

The remarks and observations made earlier about the relationships among
(CI), (C̃I), (DI), and (D̃I) are, of course, also valid for (CII), (C̃II), (DII),

and (D̃II). As in the preceding section, we shall work with the streamlined

versions (DII) and (D̃II), and, in particular, consider the pair (P ) - (DII).
The next two theorems show that (DII) is a dual problem for (P ).

Theorem 4.1 (Weak Duality). Let x and s ≡ (y, z, u, v, w, α, β) be arbitrary

feasible solutions of (P) and (DII), respectively, and assume that any one of

the following seven sets of hypotheses is satisfied:

(a) (i) for each t ∈ L, Πt(·, y, u, v, w, α, β) is strictly (F , b, φt, ρt, θ)-pseu-
dosounivex at y, φt is increasing, and φt(0) = 0;

(ii) for each t ∈ M \ L, Λt(·, v, w, β) is (F , b, φt, ρt, θ)-quasisounivex
at y, φt is increasing, and φt(0) = 0;

(iii)
∑

t∈M ρt(x, y) ≧ 0;
(b) (i) for each t ∈ L, Πt(·, y, u, v, w, α, β) is (F , b, φt, ρt, θ)-quasiso-

univex at y, φt is increasing, and φt(0) = 0;
(ii) for each t ∈M \L, Λt(·, v, w, β) is strictly (F , b, φt, ρt, θ)-pseudo-

sounivex at y, φt is increasing, and φt(0) = 0;
(iii)

∑

t∈M ρt(x, y) ≧ 0;
(c) (i) for each t ∈ L, Πt(·, y, u, v, w, α, β) is (F , b, φt, ρt, θ)-quasisounivex

at y, φt is increasing, and φt(0) = 0;
(ii) for each t ∈ M \ L, Λt(·, v, w, β) is (F , b, φt, ρt, θ)-quasisounivex

at y, φt is increasing, and φt(0) = 0;
(iii)

∑

t∈M ρt(x, y) > 0;
(d) (i) for each t ∈ L1, Πt(·, y, u, v, w, α, β) is strictly (F , b, φt, ρt, θ)-

pseudosounivex at y, for each t ∈ L2, Πt(·, y, u, v, w, α, β) is (F , b,
φt, ρt, θ)-quasisounivex at y, and for each t ∈ L, φt is increasing

and φt(0) = 0, where {L1, L2} is a partition of L;
(ii) for each t ∈M \L, Λt(·, v, w, β) is strictly (F , b, φt, ρt, θ)-pseudo-

sounivex at y, φt is increasing, and φt(0) = 0;
(iii)

∑

t∈M ρt(x, y) ≧ 0;
(e) (i) for each t ∈ L1 6= ∅, Πt(·, y, u, v, w, α, β) is strictly (F , b, φt, ρt, θ)-

pseudosounivex at y, for each t ∈ L2, Πt(·, y, u, v, w, α, β) is (F , b,
φt, ρt, θ)-quasisounivex at y, and for each t ∈ L, φt is increasing

and φt(0) = 0, where {L1, L2} is a partition of L;
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(ii) for each t ∈ M \ L, Λt(·, v, w, β) is (F , b, φt, ρt, θ)-quasisounivex
at y, φt is increasing, and φt(0) = 0;

(iii)
∑

t∈M ρt(x, y) ≧ 0;
(f) (i) for each t ∈ L, Πt(·, y, u, v, w, α, β) is (F , b, φt, ρt, θ)-quasisounivex

at y, φt is increasing, and φt(0) = 0;
(ii) for each t ∈ (M \ L)1 6= ∅, Λt(·, v, w, β) is strictly (F , b, φt, ρt, θ)-

pseudosounivex at y, for each t ∈ (M \ L)2, Λt(·, v, w, β) is (F , b,
φt, ρt, θ)-quasisounivex at y, and for each t ∈ L, φt is increasing

and φt(0) = 0, where {(M \L)1, (M \L)2} is a partition of M \L;
(iii)

∑

t∈M ρt(x, y) ≧ 0;
(g) (i) for each t ∈ L1, Πt(·, y, u, v, w, α, β) is strictly (F , b, φt, ρt, θ)-

pseudosounivex at y, for each t ∈ L2, Πt(·, y, u, v, w, α, β) is (F , b,
φt, ρt, θ)-quasisounivex at y, and for each t ∈ L, φt is increasing

and φt(0) = 0, where {L1, L2} is a partition of L;
(ii) for each t ∈ (M \ L)1, Λt(·, v, w, β) is strictly (F , b, φt, ρt, θ)-

pseudosounivex at y, for each t ∈ (M \ L)2, Λt(·, v, w, β) is (F , b,
φt, ρt, θ)-quasisounivex at y, and for each t ∈M \L, φt is increas-
ing and φt(0) = 0, where {(M \ L)1, (M \ L)2} is a partition of

M \ L;
(iii)

∑

t∈M ρt(x, y) ≧ 0;
(iv) L1 6= ∅, (M \ L)1 6= ∅, or

∑

t∈M ρt(x, y) > 0.

Then ϕ(x) 
 ψII(s).

Proof. (a) Suppose to the contrary that ϕ(x) 6 ψII(s). This implies that

Fi(x) + ‖Aix‖a(i) ≦ Fi(y) + 〈αi, Aiy〉, i ∈ p,

with strict inequality holding for at least one index ν ∈ p. Therefore, for each
t ∈ L, we have

(4.9)
∑

i∈It

ui[Fi(x) + ‖Aix‖a(i)] ≦
∑

i∈It

ui[Fi(y) + 〈αi, Aiy〉].

Since for each t ∈ L,

Πt(x, u, v, w, α, β)

≦
∑

i∈It

ui[Fi(x) + ‖αi‖∗a(i)‖Aix‖a(i)] +
∑

j∈Jt

vj [Gj(x) + ‖βj‖∗b(j)‖Bjx‖b(j)]

(by Lemma 3.1 and the primal feasibility of x)

≦
∑

i∈It

ui[Fi(x) + ‖Aix‖a(i)] +
∑

j∈Jt

vj [Gj(x) + ‖Bjx‖b(j)] (by (4.6) and (4.7))

≦
∑

i∈It

ui[Fi(x) + ‖Aix‖a(i)] (by the primal feasibility of x)

≦
∑

i∈It

ui[Fi(y) + 〈αi, Aiy〉] (by (4.9))
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≦
∑

i∈It

ui[Fi(y) + 〈αi, Aiy〉] +
∑

j∈Jt

vj [Gj(y) + 〈βj , Bjy〉] +
∑

k∈Kt

wkHk(y)

−
1

2

〈

z,
[

∑

t∈It

ui∇
2Fi(y) +

∑

j∈Jt

vj∇
2Gj(y) +

∑

k∈Kt

wk∇
2Hk(y)

]

z
〉

(by (4.4))

= Πt(y, u, v, w, α, β)−
1

2

〈

z,∇2Πt(y, u, v, w, α, β)z
〉

,

and so

φt

(

Πt(x, u, v, w, α, β)−Πt(y, u, v, w, α, β) +
1

2

〈

z,∇2Πt(y, u, v, w, α, β)z
〉

)

≦ 0,

it follows from (i) that

F
(

x, y; b(x, y)
{

∑

i∈It

ui[∇Fi(y) +AT
i α

i] +
∑

j∈Jt

vj [∇Gj(y) +BT
j β

j ]

+
∑

k∈Kt

wk∇Hk(y) +
[

∑

i∈It

ui∇
2Fi(y)+

∑

j∈Jt

vj∇
2Gj(y)+

∑

k∈Kt

wk∇
2Hk(y)

]

z
})

<− ρt(x, y)‖θ(x, y)‖
2.

Summing over t ∈ L and using the sublinearity of F(x, y; ·), we get

F
(

x, y; b(x, y)
{

p
∑

i=1

ui[∇Fi(y) +AT
i α

i](4.10)

+
∑

t∈L

{

∑

j∈Jt

vj [∇Gj(y) +BT
j β

j ] +
∑

k∈Kt

wk∇Hk(y)
}

+
{

p
∑

i=1

ui∇
2Fi(y) +

∑

t∈L

[

∑

j∈Jt

vj∇
2Gj(y) +

∑

k∈Kt

wk∇
2Hk(y)

]}

z
})

< −
∑

t∈L

ρt(x, y)‖θ(x, y)‖
2.

Following the steps used in the proof of part (a) of Theorem 3.1, one can easily
see that our assumptions in (ii) lead to

F
(

x, y; b(x, y)
{

∑

j∈Jt

vj [∇Gj(y) +BT
j β

j ] +
∑

k∈Kt

wk∇Hk(y)

+
[

∑

j∈Jt

vj∇
2Gj(y) +

∑

k∈Kt

wk∇
2Hk(y)

]

z
})

≦ − ρt(x, y)‖θ(x, y)‖
2 for each t ∈M\L.

Summing these inequalities over t∈M\L and using the sublinearity ofF(x, y; ·),
we obtain

F
(

x, y; b(x, y)
∑

t∈M\L

{

∑

j∈Jt

vj [∇Gj(y) +BT
j β

j ] +
∑

k∈Kt

wk∇Hk(y)(4.11)



750 G. J. ZALMAI

+
[

∑

j∈Jt

vj∇
2Gj(y) +

∑

k∈Kt

wk∇
2Hk(y)

]

z
})

≦ −
∑

t∈M\L

ρt(x, y)‖θ(x, y)‖
2.

Now combining (4.10) and (4.11) and using the sublinearity of F(x, y; ·) and
(iii), we see that

F
(

x, y; b(x, y)
{

p
∑

i=1

ui[∇Fi(y) +AT
i α

i] +

q
∑

j=1

vj [∇Gj(y) + BT
j β

j ]

+

r
∑

k=1

wk∇Hk(y) +
[

p
∑

i=1

ui∇
2Fi(y) +

q
∑

j=1

vj∇
2Gj(y) +

r
∑

k=1

wk∇
2Hk(y)

]

z
})

< −
∑

t∈M

ρt(x, y)‖θ(x, y)‖
2,

which contradicts (4.3). Hence, ϕ(x) 
 ψII(s).
(b)-(g): The proofs are similar to that of part (a). �

Theorem 4.2 (Strong Duality). Let x∗ be a normal efficient solution of (P)
and assume that any one of the seven sets of conditions set forth in Theorem

4.1 is satisfied for all feasible solutions of (DII). Then there exist u∗ ∈ U, v∗ ∈
Rq

+, w
∗ ∈ Rr, α∗i ∈ Rmi , and β∗j ∈ Rnj , j ∈ q, such that s∗ ≡ (x∗, z∗ =

0, u∗, v∗, w∗, α∗, β∗) is an efficient solution of (DII) and ϕ(x∗) = ψII(s∗).

Proof. The proof is similar to that of Theorem 3.2. �

The four duality models discussed in this section collectively contain a fairly
large number of special cases. They subsume a variety of existing dual problems
and include a number of new duality formulations for several classes of single-
and multiple-objective nonlinear programming problems.

5. Concluding remarks

In this paper, we have established, in a unified framework, a fairly large num-
ber of second-order duality results under a variety of generalized (F , b, φ, ρ, θ)-
sounivexity assumptions for a multiobjective programming problem containing
arbitrary norms (and square roots of positive semidefinite quadratic forms).
Each one of these duality results can easily be modified and restated for each
one of the five special cases of the prototype problem (P ) designated as (P1)
- (P5) in Section 1, and hence they collectively subsume a vast number of
second-order duality results previously established by different methods for
various classes of nonlinear programming problems with multiple and conven-
tional objective functions. Furthermore, the style and techniques employed in
this paper can be utilized for developing similar results for some other classes
of optimization problems involving more general types of second-order convex
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functions. These include discrete and continuous minmax fractional program-
ming problems, various classes of semiinfinite programming problems, and cer-
tain types of continuous-time programming problems. In particular, employing
similar techniques, one can investigate the following important problems with
continuous max and multiple objective functions:

Minimize
x∈F

max
y∈Y

f(x, y) + ‖A(y)x‖a
g(x, y)− ‖B(y)x‖b

,

Minimize
x∈F

(

f1(x) + ‖A1x‖a(1)
g1(x)− ‖B1x‖b(1)

, . . . ,
fp(x) + ‖Apx‖a(p)
gp(x) − ‖Bpx‖b(p)

)

.

We shall explore the possibility of developing various second-order duality
models for these classes of optimization problems in subsequent papers.
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