DOI QR코드

DOI QR Code

Loop-mediated isothermal amplification assay for differentiation of Mycobacterium bovis and M. tuberculosis

Mycobacterium bovis와 M. tuberculosis 감별을 위한 등온증폭법

  • Koh, Ba-Ra-Da (Health & Environment Research Institute of Gwangju) ;
  • Kim, Jae-Myung (Bacterial Disease Division, Animal and Plant Quarantine Agency) ;
  • Sung, Chang-Min (Health & Environment Research Institute of Gwangju) ;
  • Ji, Tae-Kyung (Health & Environment Research Institute of Gwangju) ;
  • Na, Ho-Myung (Health & Environment Research Institute of Gwangju) ;
  • Park, Seong-Do (Health & Environment Research Institute of Gwangju) ;
  • Kim, Yong-Hwan (Health & Environment Research Institute of Gwangju) ;
  • Kim, Eun-Sun (Health & Environment Research Institute of Gwangju)
  • 고바라다 (광주광역시보건환경연구원) ;
  • 김재명 (농림축산검역본부 세균질병과) ;
  • 성창민 (광주광역시보건환경연구원) ;
  • 지태경 (광주광역시보건환경연구원) ;
  • 나호명 (광주광역시보건환경연구원) ;
  • 박성도 (광주광역시보건환경연구원) ;
  • 김용환 (광주광역시보건환경연구원) ;
  • 김은선 (광주광역시보건환경연구원)
  • Received : 2013.05.01
  • Accepted : 2013.06.12
  • Published : 2013.06.30

Abstract

Mycobacterium (M.) bovis, a member of the M. tuberculosis complex (MTC), is a re-emerging, zoonotic agent of bovine tuberculosis whose prevalence probably depends on variations in direct exposure to cattle and ingestion of raw milk. Accurate species differentiation of M. bovis and M. tuberculosis is needed to distinguish between human and zoonotic tuberculosis. This study successfully developed a loop-mediated isothermal amplification (LAMP) assay for rapid detection and differentiation of M. bovis and M. tuberculosis, however showed negative reactions in eight non-tuberculous mycobacteria (NTM) samples and ten other bacterial species. Sensitivity of this assay for detection of genomic M. bovis DNA was 10 $fg/{\mu}l$. And this assay successfully detected M. bovis in bovine clinical specimens. In conclusion, the LAMP assay is a simple and powerful tool for rapid detection of M. bovis in both pure bacterial culture and in clinical samples.

Keywords

References

  1. Ahmed MU, Hasan Q, Hossain MM, Saito M, Tamiya E. 2010. Meat species identification based on the loop mediated isothermal amplification and electrochemical DNA sensor. Food Control 21: 599-605. https://doi.org/10.1016/j.foodcont.2009.09.001
  2. Aryan E, Makvandi M, Farajzadeh A, Huygen K, Bifani P, Mousavi SL, Fateh A, Jelodar A, Gouya MM, Romano M. 2010. A novel and more sensitive loop-mediated isothermal amplification assay targeting IS6110 for detection of Mycobacterium tuberculosis complex. Microbiol Res 165: 211-220. https://doi.org/10.1016/j.micres.2009.05.001
  3. Bi A, Nakajima C, Fukushima Y, Tamaru A, Sugawara I, Kimura A, Kawahara R, Hu Z, Suzuki Y. 2012. A rapid loop-mediated isothermal amplification assay targeting hspX for the detection of Mycobacterium tuberculosis complex. Jpn J Infect Dis 65: 247-251. https://doi.org/10.7883/yoken.65.247
  4. Gandelman O, Jackson R, Kiddle G, Tisi L. 2011. Loop-mediated amplification accelerated by stem primers. Int J Mol Sci 12: 9108-9124. https://doi.org/10.3390/ijms12129108
  5. Gandelman OA, Church VL, Moore CA, Kiddle G, Carne CA, Parmar S, Jalal H, Tisi LC, Murray JAH. 2010. Novel bioluminescent quantitative detection of nucleic acid amplification in real-time. PLoS ONE 5: e14155. https://doi.org/10.1371/journal.pone.0014155
  6. Geojith G, Dhanasekaran S, Chandran SP, Kenneth J. 2011. Efficacy of loop mediated isothermal amplification (LAMP) assay for the laboratory identification of Mycobacterium tuberculosis isolates in a resource limited setting. J Microbiol Methods 84: 71-73. https://doi.org/10.1016/j.mimet.2010.10.015
  7. Grange JM, Collins CH. 1987. Bovine tubercle bacilli and disease in animals and man. Epidemiol Infect 99: 221-234. https://doi.org/10.1017/S0950268800067686
  8. Hong M, Zha L, Fu W, Zou M, Li W, Xu D. 2012. A modified visual loop-mediated isothermal amplification method for diagnosis and differentiation of main pathogens from Mycobacterium tuberculosis complex. World J Microbiol Biotechnol 28: 523-531. https://doi.org/10.1007/s11274-011-0843-y
  9. Hwang ES, Lee TU, Jung DY, Cho HS. 2011. Development of loop-mediated isothermal amplification method for the rapid and sensitive detection of bovine tuberculosis in Korea native cattle. Korean J Vet Serv 34: 333-339. https://doi.org/10.7853/kjvs.2011.34.4.333
  10. Iwamoto T, Sonobe T, Hayashi K. 2003. Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples. J Clin Microbiol 41: 2616-2622. https://doi.org/10.1128/JCM.41.6.2616-2622.2003
  11. Jung C, Chung JW, Kim UO, Kim MH, Park HG. 2010. Isothermal target and signaling probe amplification method, based on a combination of an isothermal chain amplification technique and a fluorescence resonance energy transfer cycling probe technology. Anal Chem 82: 5937-5943. https://doi.org/10.1021/ac100606m
  12. Koh BRD, Jang YB, Ku BK, Cho HS, Bae SY, Na HM, Park SD, Kim YH, Mun YU. 2011. Development of real-time PCR for rapid detection of Mycobacterium bovis DNA in cattle lymph nodes and differentiation of M. bovis and M. tuberculosis. Korean J Vet Serv 34: 321-331. https://doi.org/10.7853/kjvs.2011.34.4.321
  13. Liang C, Chu Y, Cheng S, Wu H, Kajiyama T, Kambara H, Zhou G. 2012. Multiplex loop-mediated isothermal amplification detection by sequence-based barcodes coupled with nicking endonuclease-mediated pyrosequencing. Anal Chem 84: 3758-3763. https://doi.org/10.1021/ac3003825
  14. Lim SK, Park JY, Park SD, Chang HK. 2011. Localized empyema due to Mycobacterium bovis. Korean J Med 81: 792-796.
  15. Mori Y, Hirano T, Notomi T. 2006. Sequence specific visual detection of LAMP reactions by addition of cationic polymers. BMC Biotechnol 6: 3. https://doi.org/10.1186/1472-6750-6-3
  16. Mori Y, Kitao M, Tomita N, Notomi T. 2004. Real-time turbidimetry of LAMP reaction for quantifying template DNA. J Biochem Biophys Methods 59: 145-157. https://doi.org/10.1016/j.jbbm.2003.12.005
  17. Mori Y, Nagamine K, Tomita N, Notomi T. 2001. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun 289: 150-154. https://doi.org/10.1006/bbrc.2001.5921
  18. Nagamine K, Hase T, Notomi T. 2002a. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes 16: 223-229. https://doi.org/10.1006/mcpr.2002.0415
  19. Nagamine K, Kuzuhara Y, Notomi T. 2002b. Isolation of single- stranded DNA from loop-mediated isothermal amplification products. Biochem Biophys Res Commun 290: 1195-1198. https://doi.org/10.1006/bbrc.2001.6334
  20. Nagamine K, Watanabe K, Ohtsuka K, Hase T, Notomi T. 2001. Loop-mediated isothermal amplification reaction using a nondenatured template. Clin Chem 47: 1742-1743.
  21. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28: E63. https://doi.org/10.1093/nar/28.12.e63
  22. Pandey BD, Poudel A, Yoda T, Tamaru A, Oda N, Fukushima Y, Lekhak B, Risal B, Acharya B, Sapkota B, Nakajima C, Taniguchi T, Phetsuksiri B, Suzuki Y. 2008. Development of an in-house loop-mediated isothermal amplification (LAMP) assay for detection of Mycobacterium tuberculosis and evaluation in sputum samples of Nepalese patients. J Med Microbiol 57: 439-443. https://doi.org/10.1099/jmm.0.47499-0
  23. Parra A, Garcia N, Garcia A, Lacombe A, Moreno F, Freire F, Moran J, Hermoso de Mendoza J. 2008. Development of a molecular diagnostic test applied to experimental abattoir surveillance on bovine tuberculosis. Vet Microbiol 127: 315-324. https://doi.org/10.1016/j.vetmic.2007.09.001
  24. Thoen C, Lobue P, de Kantor I. 2006. The importance of Mycobacterium bovis as a zoonosis. Vet Microbiol 112: 339-345. https://doi.org/10.1016/j.vetmic.2005.11.047
  25. Tomita N, Mori Y, Kanda H, Notomi T. 2008. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc 3: 877-882. https://doi.org/10.1038/nprot.2008.57
  26. Tong Y, Tang W, Kim HJ, Pan X, Ranalli TA, Kong H. 2008. Development of isothermal TaqMan assays for detection of biothreat organisms. Biotechniques 45: 543-557. https://doi.org/10.2144/000112959
  27. Zhang J, Zhang GH, Yang L, Huang R, Zhang Y, Jia K, Yuan W, Li SJ. 2011. Development of a loop-mediated isothermal amplification assay for the detection of Mycobacterium bovis. Vet J 187: 393-396. https://doi.org/10.1016/j.tvjl.2010.01.001
  28. Zhu RY, Zhang KX, Zhao MQ, Liu YH, Xu YY, Ju CM, Li B, Chen JD. 2009. Use of visual loop-mediated isothermal amplification of rimM sequence for rapid detection of Mycobacterium tuberculosis and Mycobacterium bovis. J Microbiol Methods 78: 339-343. https://doi.org/10.1016/j.mimet.2009.07.006
  29. Zumarraga M, Bigi F, Alito A, Romano MI, Cataldi A. 1999. A 12.7 kb fragment of the Mycobacterium tuberculosis genome is not present in Mycobacterium bovis. Microbiology 145: 893-897. https://doi.org/10.1099/13500872-145-4-893

Cited by

  1. Loop-mediated isothermal amplification assay for the rapid detection of swine influenza virus vol.38, pp.2, 2015, https://doi.org/10.7853/kjvs.2015.38.2.107
  2. Visual detection of porcine circovirus 2 by loop-mediated isothermal amplification (LAMP) with hydroxynaphthol blue dye vol.38, pp.3, 2015, https://doi.org/10.7853/kjvs.2015.38.3.145
  3. 구제역바이러스 신속진단을 위한 pan-serotype reverse transcription loop-mediated isothermal amplification (RT-LAMP) 진단법 vol.41, pp.1, 2013, https://doi.org/10.7853/kjvs.2018.41.1.29