DOI QR코드

DOI QR Code

Zinc-chelated Vitamin C Stimulates Adipogenesis of 3T3-L1 Cells

  • Ghosh, Chiranjit (Animal Environment Division, National Institute of Animal Science, RDA) ;
  • Yang, Seung Hak (Animal Environment Division, National Institute of Animal Science, RDA) ;
  • Kim, Jong Geun (Animal Environment Division, National Institute of Animal Science, RDA) ;
  • Jeon, Tae-Il (Department of Animal Science, College of Agriculture & Life Science, Chonnam National University) ;
  • Yoon, Byung Hyun (FeedBEST CORP) ;
  • Lee, Jai Young (Department of Chemistry, Konyang University) ;
  • Lee, Eun Young (Department of Environmental Energy Engineering, Suwon University) ;
  • Choi, Seok Geun (Department of Animal Life and Environmental Science, Hankyong National University) ;
  • Hwang, Seong Gu (Department of Animal Life and Environmental Science, Hankyong National University)
  • Received : 2013.04.01
  • Accepted : 2013.05.15
  • Published : 2013.08.01

Abstract

Adipose tissue development and function play a critical role in the regulation of energy balance, lipid metabolism, and the pathophysiology of metabolic syndromes. Although the effect of zinc ascorbate supplementation in diabetes or glycemic control is known in humans, the underlying mechanism is not well described. Here, we investigated the effect of a zinc-chelated vitamin C (ZnC) compound on the adipogenic differentiation of 3T3-L1 preadipocytes. Treatment with ZnC for 8 d significantly promoted adipogenesis, which was characterized by increased glycerol-3-phosphate dehydrogenase activity and intracellular lipid accumulation in 3T3-L1 cells. Meanwhile, ZnC induced a pronounced up-regulation of the expression of glucose transporter type 4 (GLUT4) and the adipocyte-specific gene adipocyte protein 2 (aP2). Analysis of mRNA and protein levels further showed that ZnC increased the sequential expression of peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) and CCAAT/enhancer-binding protein alpha (C/$EBP{\alpha}$), the key transcription factors of adipogenesis. These results indicate that ZnC could promote adipogenesis through $PPAR{\gamma}$ and C/$EBP{\alpha}$, which act synergistically for the expression of aP2 and GLUT4, leading to the generation of insulin-responsive adipocytes and can thereby be useful as a novel therapeutic agent for the management of diabetes and related metabolic disorders.

Keywords

References

  1. Farvid, M. S., F. Siassi, M. Jalali, and M. Hosseini. 2005. Comparison of the effects of vitamins and/or mineral supplementation on glomerular and tubular dysfunction in type 2 diabetes. Diabetes Care 28:2458-2464. https://doi.org/10.2337/diacare.28.10.2458
  2. Green, H., and O. Kehinde. 1976. Spontaneous heritable changes leading to increased adipose conversion in 3T3 cells. Cell 7:105-113. doi: 10.1016/0092-8674(76)90260-9
  3. Gregoire, F. M., C. M. Smas, and H. S. Sul. 1998. Understanding Adipocyte Differentiation. Physiol. Rev. 78:783-809.
  4. Gunasekara, P., M. Hettiarachchi, C. Liyanage, and S. Lekamwasam. 2011. Effects of zinc and multimineral vitamin supplementation on glycemic and lipid control in adult diabetes. Diabetes Metab. Syndr. Obes. 26:53-60. doi: 10.2147/DMSO.S16691
  5. Holman, G. D., and M. Kasuga. 1997. From receptor to transporter: insulin signalling to glucose transport. Diabetologia 40:991-1003. doi: 10.1007/s001250050780
  6. Kawada, T., N. Aoki, Y. Kamei, K. Maeshige, S. Nishiu, and E. Sugimoto. 1990. Comparative investigation of vitamins and their analogues on terminal differentiation, from preadipocytes to adipocytes, of 3T3-L1 cells. Comp. Biochem. Physiol. Part A. Physiol. 96:323-326. doi: http://dx.doi.org/10.1016/0300-9629(90)90699-S
  7. Kiess, W., S. Petzold, M. Topfer, A. Garten, S. Bluher, T. Kapellen, and J. Kratzsch. 2008. Adipocytes and adipose tissue. Best. Pract. Res. Clin. Endocrinol. Metab. 22:135-153. doi: 10.1016/j.beem.2007.10.002
  8. Kinlaw, W. B., A. S. Levine, J. E. Morley, S. E. Silvis, and C. J. McClain. 1983. Abnormal zinc metabolism in type II diabetes mellitus. Am. J. Med. 75:273-277. https://doi.org/10.1016/0002-9343(83)91205-6
  9. Kodama, M., T. Kodama, M. Murakami, and M. Kodama. 1993. Diabetes mellitus is controlled by vitamin C treatment. In. Vivo 7(6A):535-542.
  10. May, J. M., and C. S. Contoreggi. 1982. The mechanism of the insulin-like effects of ionic zinc. J. Biol.Chem. 257:4362-4368.
  11. Mizuarai, S., S. Miki, H. Araki, K. Takahashi, and H. Kotani. 2005. Identification of dicarboxylate carrier Slc25a10 as malate transporter in de Novo fatty acid synthesis. J. Biol.Chem. 280: 32434-32441. doi: 10.1074/jbc.M503152200.
  12. Nawrocki, A. R., and P. E. Scherer. 2005. Keynote review: The adipocyte as a drug discovery target. Drug.Discov.Today. 10: 1219-1230. doi: 10.1016/S1359-6446(05)03569-5
  13. Pittas, A. G., J. Lau, F. B. Hu, and B. Dawson-Hughes. 2007. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 92:2017-2029. doi: 10.1210/jc.2007-0298
  14. Reitman, M. L., E. Arioglu, O. Gavrilova, and S. I. Taylor. 2000. Lipoatrophy revisited. Trends. Endocrinol. Metabol. 11:410-416. doi: 10.1016/S1043-2760(00)00309-X
  15. Rosen, E. D. 2005. The transcriptional basis of adipocyte development. Prostaglandins. Leukot. Essent. Fatty Acids 73: 31-34. doi: 10.1016/j.plefa.2005.04.004.
  16. Ross, S. R., R. A. Graves, A. Greenstein, K. A. Platt, H. L. Shyu, B. Mellovitz, B. M. Spiegelman. 1990. A fat-specific enhancer is the primary determinant of gene expression for adipocyte P2 in vivo. Proc. Natl. Acad. Sci. USA. 24:9590-9594.
  17. Shang, W., Y. Yang, B. Jiang, H. Jin, L. Zhou, S. Liu, and M. Chen. 2007. Ginsenoside Rb1 promotes adipogenesis in 3T3-L1 cells by enhancing PPAR${\gamma}$ and C/EBP${\alpha}$ gene expression. Life. Sci. 80:618-625. doi: 10.1016/j.lfs.2006.10.021
  18. Spiegelman, B. M., 1998. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47:507-514. doi: 10.2337/diabetes.47.4.507
  19. Spiegelman, B. M., and J. S. Fliber. 1996. Adipogenesis and obesity: rounding out the big picture. Cell 87:377-389. https://doi.org/10.1016/S0092-8674(00)81359-8
  20. Spiegelman, B. M., and J. S. Flier. 2001. Obesity and the regulation of energy balance. cell 104:531-543. doi: 10.1016/S0092-8674(01)00240-9.
  21. Tang, X.-h., and N. F. Shay. 2001. Zinc has an insulin-like effect on glucose transport mediated by phosphoinositol-3-Kinase and akt in 3T3-L1 fibroblasts and adipocytes. J. Nutr. 131: 1414-1420.
  22. Tontonoz, P., E. Hu, and B. M. Spiegelman. 1994. Stimulation of adipogenesis in fibroblasts by PPAR${\gamma}$2, a lipid-activated transcription factor. Cell 79:1147-1156. https://doi.org/10.1016/0092-8674(94)90006-X
  23. Unaleroglu, C., B. Zumreoglu-Karan, and Y. Mert. 2002. Zinc ascorbate: a combined experimental and computational study for structure elucidation. J. Mol. Struct. 605:227-233. doi: 10.1016/S0022-2860(01)00765-7
  24. Willson, T. M., M. H. Lambert, and S. A. Kliewer. 2001. Peroxisome proliferator-activated receptor gamma and metabolic disease. Annu. Rev. Biochem. 70:341-367. doi: 10.1146/annurev.biochem.70.1.341.
  25. Wu, Z., E. D. Rosen, R. Brun, S. Hauser, G. Adelmant, A. E. Troy, and B. M. Spiegelman. 1999. Cross-tegulation of C/EBP${\alpha}$ and PPAR${\gamma}$ controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol. Cell 3:151-158. doi: http://dx.doi.org/10.1016/S1097-2765(00)80306-8
  26. Yamauchi, T., J. Kamon, H. Waki, K. Murakami, K. Motojima, K. Komeda, and T. Kadowaki. 2001. The mechanisms by which both heterozygous peroxisome proliferator-activated receptor gamma (PPARgamma) deficiency and PPARgamma agonist improve insulin resistance. J. Biol. Chem. 276:41245-41254. doi: 10.1074/jbc.M103241200

Cited by

  1. Zinc and diabetes mellitus: understanding molecular mechanisms and clinical implications vol.23, pp.1, 2015, https://doi.org/10.1186/s40199-015-0127-4
  2. Zinc transporter 7 deficiency affects lipid synthesis in adipocytes by inhibiting insulin-dependent Akt activation and glucose uptake vol.283, pp.2, 2015, https://doi.org/10.1111/febs.13582
  3. Chronic High Dose Zinc Supplementation Induces Visceral Adipose Tissue Hypertrophy without Altering Body Weight in Mice vol.9, pp.10, 2017, https://doi.org/10.3390/nu9101138
  4. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism pp.1880-6562, 2017, https://doi.org/10.1007/s12576-017-0571-7
  5. 킬레이트 유기 미네랄 액비가 '죽향' 딸기의 생육 및 과실품질에 미치는 영향 vol.25, pp.4, 2017, https://doi.org/10.11625/kjoa.2017.25.4.725