DOI QR코드

DOI QR Code

In vitro Fermentation, Digestion Kinetics and Methane Production of Oilseed Press Cakes from Biodiesel Production

  • Olivares-Palma, S.M. (Faculty of Veterinary Science, University of Sydney) ;
  • Meale, S.J. (Faculty of Veterinary Science, University of Sydney) ;
  • Pereira, L.G.R. (Embrapa Dairy Cattle, Rua Eugenio do Nascimento) ;
  • Machado, F.S. (Embrapa Dairy Cattle, Rua Eugenio do Nascimento) ;
  • Carneiro, H. (Embrapa Dairy Cattle, Rua Eugenio do Nascimento) ;
  • Lopes, F.C.F. (Embrapa Dairy Cattle, Rua Eugenio do Nascimento) ;
  • Mauricio, R.M. (Universidade Federal de Sao Joao del Rei) ;
  • Chaves, Alex V. (Faculty of Veterinary Science, University of Sydney)
  • Received : 2013.02.12
  • Accepted : 2013.05.05
  • Published : 2013.08.01

Abstract

Following the extraction of oil for biodiesel production, oilseed press cakes are high in fat. As the dietary supplementation of fat is currently considered the most promising strategy of consistently depressing methanogenesis, it follows that oilseed press cakes may have a similar potential for $CH_4$ abatement. As such, this study aimed to characterise the nutritive value of several oilseed press cakes, glycerine and soybean meal (SBM) and to examine their effects on in vitro ruminal fermentation, digestion kinetics and $CH_4$ production. Moringa press oil seeds exhibited the greatest in sacco effective degradability (ED) of DM and CP (p<0.05). In vitro gas production (ml/g digested DM) was not affected (p = 0.70) by supplement at 48 h of incubation. In vitro DMD was increased with the supplementation of glycerine and SBM at all levels of inclusion. Moringa oilseed press cakes produced the lowest $CH_4$ (mg/g digested DM) at 6 and 12 h of incubation (p<0.05). The findings suggest that moringa oilseed press cake at 400 g/kg DM has the greatest potential of the oilseed press cakes examined in this study, to reduce $CH_4$ production, without adversely affecting nutrient degradability.

Keywords

References

  1. Anwar, F., and U. Rashid. 2007. Physio-chemical characteristics of moringa oleifera seeds and seed oil from a wild provenance of Pakistan. Pak. J. Bot. 39:1443-1453.
  2. AOAC. 1990. Official methods of analysis (15th edn). in Association of Official Analytical Chemists. Gaithersburg, MD.
  3. Avila, J. S., A. V. Chaves, M. Hernandez-Calva, K. A. Beauchemin, S. M. McGinn, Y. Wang, O. M. Harstad, and T. A. McAllister. 2011. Effects of replacing barley grain in feedlot diets with increasing levels of glycerol on in vitro fermentation and methane production. Anim. Feed Sci. Technol. 166-167:265-268. https://doi.org/10.1016/j.anifeedsci.2011.04.016
  4. Buckner, C. D., G. E. Erickson, T. L. Mader, S. L. Colgan, K. K. Karges, and M. L. Gibson. 2007. Optimum levels of dry distillers grains with solubles for finishing beef steers. Pages 36-38 in Neb. Beef Cattle Reports.
  5. Chaves, A. V., L. C. Thompson, A. D. Iwaasa, S. L. Scott, M. E. Olson, C. Benchaar, D. M. Veira, and T. A. McAllister. 2006a. Effect of pasture type (alfalfa vs. grass) on methane and carbon dioxide production by yearling beef heifers. Can. J. Anim. Sci. 86:409-418. https://doi.org/10.4141/A05-081
  6. Chaves, A. V., S. L. Woodward, G. C. Waghorn, I. M. Brookes, and J. L. Burke. 2006b. Effects on performance of sulla and/or maize silages supplements for grazing dairy cows. Asian-Aust. J. Anim. Sci. 19:1271-1282. https://doi.org/10.5713/ajas.2006.1271
  7. Doreau, M., and Y. Chillard. 1997. Digestion and metabolism of dietary fat in farm animals. Br. J. Nutr. 78:S15-S35. https://doi.org/10.1079/BJN19970132
  8. FAO. 2006. World Agriculture: towards 2030/2050. Interim Report. Rome, Italy.
  9. Fedorak, P. M., and S. E. Hrudey. 1983. A simple apparatus for measuring gas-production by methanogenic cultures in serum bottles. Environ. Technol. Lett. 4:425-432. https://doi.org/10.1080/09593338309384228
  10. Gohl, B. 1998. Tropical feeds Version 8, Rome.
  11. Grainger, C., and K. A. Beauchemin. 2011. Can enteric methane emissions from ruminants be lowered without lowering their production? Anim. Feed Sci. Technol. 166-167:308-320. https://doi.org/10.1016/j.anifeedsci.2011.04.021
  12. Gralak, M. A., T. Kamalu, M. A. Von Keyserlingk, and G. W. Kulasek. 1997. Rumen dry matter and crude protein degradability of extracted or untreated oilseeds and leucaena leucocephala leaves. Arch Tierernahr 50:173-185. https://doi.org/10.1080/17450399709386129
  13. Holtshausen, L., A. V. Chaves, K. A. Beauchemin, S. M. McGinn, T. A. McAllister, P. R. Cheeke, and C. Benchaar. 2009. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. J. Dairy Sci. 92:2809-2821. https://doi.org/10.3168/jds.2008-1843
  14. Johns, A. T. 1953. Fermentation of glycerol in the rumen of sheep. N.Z. J. Sci. Technol. 35:362-269.
  15. Johnson, K. A., and D. E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73:2483-2492.
  16. Lee, S.-Y., S.-M. Lee, Y.-B. Cho, D.-K. Kam, S.-C. Lee, C.-H. Kim, and S. Seo. 2011. Glycerol as a feed supplement for ruminants: In vitro fermentation characteristics and methane production. Anim. Feed Sci. Technol. 166-167:269-274. https://doi.org/10.1016/j.anifeedsci.2011.04.070
  17. Lopez, S., J. France, M. S. Dhanoa, F. Mould, and J. Dijkstra. 1999. Comparison of mathematical models to describe disappearance curves obtained using the polyester bag technique for incubating feeds in the rumen. J. Anim. Sci. 77:1875-1888.
  18. Madeira, Jr, J. V., J. A. Macedo, and G. A. Macedo. 2011. Detoxification of castor bean residues and the simultaneous production of tannase and phytase by solid-state fermentation using Paecilomyces variotii. Bioresour. Technol. 102:7343-7348. https://doi.org/10.1016/j.biortech.2011.04.099
  19. Makkar, H. P. S., G. Francis, and K. Becker. 2007. Bioactivity of phytochernicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. Animal 9:1371-1391.
  20. Makkar, H. P. S., G. Francis, and K. Becker. 2008. Protein concentrate from Jatropha curcas screw-pressed seed cake and toxic and antinutritional factors in protein concentrate. J. Sci. Food Agric. 88:1542-1548 https://doi.org/10.1002/jsfa.3248
  21. Meale, S. J., A. V. Chaves, J. Baah, and T. A. McAllister. 2012. Methane production of different forages in in vitro ruminal fermentation. Asian-Aust. J. Anim. Sci. 25:86-91. https://doi.org/10.5713/ajas.2011.11249
  22. Mertens, D. R. 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. J. AOAC Int. 85:1217-1240.
  23. Nagalakshimi, D., K. Dhanakshmi, and D. Himabindu. 2010. Replacement of groundnut cake with castor seed cake on performance, nutrient utilisation, immunocompetence and carcass characterisitcs in lambs. in Proc. XXVI Wolrd Buiatrics Congress, Santiago, Chile.
  24. Promkot, C., M. Wanapat, and P. Rowlinson. 2007. Estimation of ruminal degradation and intestinal digestion of tropical protein resources using the nylon bag technique and the three-step in vitro procedure in dairy cattle on rice straw diets. Asian-Aust. J. Anim. Sci. 20:1849-1857. https://doi.org/10.5713/ajas.2007.1849
  25. Sarwatt, S. V., M. S. Milangha, F. P. Lekule, and N. Madallam. 2004. Moringa oleifera and cottonseed cake as supplements for smallholder dairy cows fed Napier grass. Livestock Res. for Rural Develop. 16 Art. #38. Retrieved September 22, 2011, from http://www.lrrd.org/lrrd16/6/sarw16038.htm.
  26. SAS. 2013. SAS $OnlineDoc^{(R)}$ 9.1.3. in SAS Inc., Cary, NC, USA.
  27. Schroder, A., and K. H. Sudekum. 1999. Glycerol as a by-product of biodiesel production in diets for ruminants. in Proc. New Horizons for an Old Crop. Proc. 10th Int. Rapeseed Congr, Canberra, Australia.
  28. Sudekum, K. H. 2007. Co-products from biodiesel production. Pages 201-219 in Recent Advances in Animal Nutrition. P. C. Garnsworthy and J. Wiseman, ed. Nottingham University Press, Nottingham, UK.
  29. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber and nonstarch polysachharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  30. Vitti, D. M. S. S., A. L. Abdalla, J. C. Silva Filho, N. L. del Mastro, R. Mauricio, E. Oven, and F. Mould. 1999. Misleading relationships between in situ rumen dry mater disappearance, chemical analyzed and in vitro gas production and digestibility, of sugarcane baggage treated with varying levels of electron irradiation and ammonia. Anim. Feed Sci. Technol. 79:145-153. https://doi.org/10.1016/S0377-8401(99)00014-0
  31. Waghorn, G. C., and W. C. McNabb. 2003. Consequences of plant phenolic compounds for productivity and health of ruminants. Proc. Nutr. Soc. 62:383-392. https://doi.org/10.1079/PNS2003245

Cited by

  1. Milk production, intake, digestion, blood parameters, and ingestive behavior of cows supplemented with by-products from the biodiesel industry vol.47, pp.1, 2015, https://doi.org/10.1007/s11250-014-0706-2
  2. Fontes proteicas alternativas oriundas da cadeia produtiva do biodiesel para alimentação de ruminantes vol.67, pp.2, 2015, https://doi.org/10.1590/1678-7703
  3. Effects of the inclusion of Moringa oleifera seed on rumen fermentation and methane production in a beef cattle diet using the rumen simulation technique (Rusitec) pp.1751-732X, 2018, https://doi.org/10.1017/S1751731118001428
  4. Methane production and microbial protein synthesis in adult sheep fed total mixed ration as mash and as complete feed block vol.10, pp.3, 2013, https://doi.org/10.1080/17583004.2019.1586280
  5. Effect of Feeding Moringa Seed Cake as an Alternative Protein Source in Lactating Ewe’s Rations vol.15, pp.2, 2013, https://doi.org/10.3923/ijds.2020.80.87
  6. Ruminal fermentation kinetics of Moringa oleifera leaf and seed as protein feeds in dairy cow diets: in sacco degradability and protein and fiber fractions assessed by the CNCPS method vol.94, pp.3, 2013, https://doi.org/10.1007/s10457-019-00456-7