DOI QR코드

DOI QR Code

Automatic Detection of Cow's Oestrus in Audio Surveillance System

  • Chung, Y. (Department of Computer and Information Science, College of Science and Technology, Korea University) ;
  • Lee, J. (Department of Computer and Information Science, College of Science and Technology, Korea University) ;
  • Oh, S. (Department of Computer and Information Science, College of Science and Technology, Korea University) ;
  • Park, D. (Department of Computer and Information Science, College of Science and Technology, Korea University) ;
  • Chang, H.H. (Department of Animal Science, Institute of Agriculture & Life Sciences, College of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Kim, S. (College of Veterinary Medicine, Gyeongsang National University)
  • 투고 : 2012.11.09
  • 심사 : 2013.01.29
  • 발행 : 2013.07.01

초록

Early detection of anomalies is an important issue in the management of group-housed livestock. In particular, failure to detect oestrus in a timely and accurate way can become a limiting factor in achieving efficient reproductive performance. Although a rich variety of methods has been introduced for the detection of oestrus, a more accurate and practical method is still required. In this paper, we propose an efficient data mining solution for the detection of oestrus, using the sound data of Korean native cows (Bos taurus coreanea). In this method, we extracted the mel frequency cepstrum coefficients from sound data with a feature dimension reduction, and use the support vector data description as an early anomaly detector. Our experimental results show that this method can be used to detect oestrus both economically (even a cheap microphone) and accurately (over 94% accuracy), either as a standalone solution or to complement known methods.

키워드

참고문헌

  1. Alawneh, J. I., N. B. Williamson, and D. Bailey. 2006. Comparison of a camera - software system and typical farm management for detecting oestrus in dairy cattle at pasture. N.Z. Vet. J. 54:73-77. https://doi.org/10.1080/00480169.2006.36615
  2. At-Taras, E. E., and S. L. Spahr. 2001. Detection and characterization of estrus in dairy cattle with an electronic heatmount detector and an electronic activity tag. J. Dairy Sci. 84:792-798. https://doi.org/10.3168/jds.S0022-0302(01)74535-3
  3. Berckmans, D. 2004. Automatic on-line monitoring of animals by precision livestock farming. Keynote in the ISAH conference "Animal Production in Europe: The way forward in a changing world". 1:27-30.
  4. Brehme, U., U. Stollberg, R. Holz, and T. Schleusener. 2008. ALT pedometer - new sensor-aided measurement system for improvement in oestrus detection. Comput. Electron. Agric. 62:73-80. https://doi.org/10.1016/j.compag.2007.08.014
  5. Cox, S. 2003. Precision livestock farming. Wageningen Academic Pub, AE Wageningen, Netherlands.
  6. Cristianini, N., and J. Shawe-Taylor. 2000. An introduction to support vector machines and other kernel-based learning methods, Cambridge University Press, Cambridge.
  7. Davies, E. 2009. The application of machine vision to food and agriculture: a review. Imaging Sci. J. 57:197-217. https://doi.org/10.1179/174313109X454756
  8. De Mol, R. M., A. Keen, G. H. Kroeze, and J. M. F. H. Achten. 1999. Description of a detection model for oestrus and diseases in dairy cattle based on time series analysis combined with a Kalman filter. Comput. Electron. Agric. 22:171-185. https://doi.org/10.1016/S0168-1699(99)00016-2
  9. Firk, R., E. Stamer, W. Junge, and J. Krieter. 2002. Automation of oestrus detection in dairy cows: a review. Livest. Prod. Sci. 75: 219-232. https://doi.org/10.1016/S0301-6226(01)00323-2
  10. Firk, R., E. Stamer, W. Junge, and J. Krieter. 2003. Oestrus detection in dairy cows based on serial measurements using univariate and multivariate analysis. Arch. Tierz. 46:127-142.
  11. Fisher, A. D., R. Morton, J. M. Dempsey, J. M. Henshall, and J. R. Hill. 2008. Evaluation of a new approach for the estimation of the time of the LH surge in dairy cows using vaginal temperature and electrodeless conductivity measurements. Theriogenology 70:1065-1074. https://doi.org/10.1016/j.theriogenology.2008.06.023
  12. Friggens, N. C., M. Bjerring, C. Ridder, S. Hojsgaard, and T. Larsen. 2008. Improved detection of reproductive status in dairy cows using milk progesterone measurements. Reprod. Domest. Anim. 43:113-121. https://doi.org/10.1111/j.1439-0531.2008.01150.x
  13. Frost, A., C. Schofield, S. Beaulah, T. Mottram, J. Lines, and C. Wathes. 1997. A review of livestock monitoring and the need for integrated systems. Comput. Electron. Agric. 17:139-159. https://doi.org/10.1016/S0168-1699(96)01301-4
  14. Gutiérrez, A., C. Gonzalez, J. Jimenez-Leube, S. Zazo, N. Dopico, and I. Raos. 2009. A heterogeneous wireless identification network for the localization of animals based on stochastic movements. Sensors 9:3942-3957. https://doi.org/10.3390/s90503942
  15. Hall, M. 1998. Correlation-based Feature Selection for Machine Learning, Ph.D. Thesis, Department of Computer Science, Waikato University, Hamilton, NZ.
  16. Han, J., M. Kamber, and J. Pei. 2012. Data Mining: concepts and Techniques. 3rd Ed. Morgan Kaufman Publishers, Wyman Street, Waltham.
  17. Hancock, R., D. Swain, G. Bishop-Hurley, K. Patison, T. Wark, P. Valencia, P. Corke, and C. ONeill. 2009. Monitoring animal behavior and environmental interactions using wireless sensor networks, GPS collars and satellite remote sensing. Sensors 9: 3586-3603. https://doi.org/10.3390/s90503586
  18. Hockey, C., J. Morton, S. Norman, and M. McGowan. 2010. Evaluation of a neck mounted 2-hourly activity meter system for detecting cows about to ovulate in two paddock-based Australian dairy herds. Reprod. Domest. Anim. 45:107-117.
  19. Hwang, J., and H. Yoe. 2010. Study of the ubiquitous hog farm system using wireless sensor networks for environmental monitoring and facilities control. Sensors 10:10752-10777. https://doi.org/10.3390/s101210752
  20. Hwang, J., C. Shin, and H. Yoe. 2010. Study on an agricultural environment monitoring server system using wireless sensor networks. Sensors 10:11189-11211. https://doi.org/10.3390/s101211189
  21. Ikeda, Y., and Y. Ishii. 2008. Recognition of two psychological conditions of a single cow by her voice. Comput. Electron. Agric. 62:67-72. https://doi.org/10.1016/j.compag.2007.08.012
  22. Jahns, G. 2008. Call recognition to identify cow conditions-a call-recogniser translating calls to text. Comput. Electron. Agric. 62:54-58. https://doi.org/10.1016/j.compag.2007.09.005
  23. Jimenez, A., F. Bautista, C. S. Galina, J. J. Romero, and I. Rubio. 2011. Behavioral characteristics of Bos indicus cattle after a superovulatory treatment compared to cows synchronized for estrus. Asian-Aust. J. Anim. Sci. 24:1365-1371. https://doi.org/10.5713/ajas.2011.11032
  24. Jonsson, R., M. Blanke, N. K. Poulsen, F. Caponetti, and S. Hojsgaard. 2011. Oestrus detection in dairy cows from activity and lying data using on-line individual models. Comput. Electron. Agric. 76:6-15. https://doi.org/10.1016/j.compag.2010.12.014
  25. Koelsch, R. K., D. J. Aneshansley, and W. R. Butler. 1994. Analysis of activity measurement for accurate oestrus detection in dairy cattle. J. Agric. Eng. Res. 58:107-114. https://doi.org/10.1006/jaer.1994.1040
  26. Lehrer, A. R., G. S. Lewia, and E. Aizinbud. 1992. Oestrus detection in cattle: recent developments. Anim. Reprod. Sci. 28:355-362. https://doi.org/10.1016/0378-4320(92)90121-S
  27. Lyimo, Z., M. Nielen, W. Ouweltjes, T. Kruip, and F. Van Eerdenburg. 2000. Relationship among estradiol, cortisol and intensity of estrous behavior in dairy cattle. Theriogenology 53:1783-1795. https://doi.org/10.1016/S0093-691X(00)00314-9
  28. Maatje, K., R. M. De Mol, and W. Rossing 1997. Cow status monitoring (health and oestrus) using detection sensors. Comput. Electron. Agric. 16:245-254. https://doi.org/10.1016/S0168-1699(96)00052-X
  29. Mahdi, S., and T. Azizollah. 2009. Voice command recognition system based on MFCC and VQ algorithms, World Acad. Sci. Eng. Technol. 534-538.
  30. Mitchell, R. S., R. A. Sherlock, and L. A. Smith. 1996. An investigation into the use of machine learning for determining oestrus in cows. Comput. Electron. Agric. 15:195-213. https://doi.org/10.1016/0168-1699(96)00016-6
  31. Nebel, R. L., M. G. Dransfield, S. M. Jobst, and J. H. Bame 2000. Automated electronic systems for the detection of oestrus and timing of AI in cattle. Anim. Reprod. Sci. 60-61:713-723. https://doi.org/10.1016/S0378-4320(00)00090-7
  32. Peipei, S., C. Zhou, and C. Xiong. 2011. Automatic speech emotion recognition using support vector machine. International Conference on Electronic & Mechanical Engineering and Information Technology. 621-625.
  33. Roelofs, J. B., F. J. Van Eerdenburg, N. H. Soede, and B. Kemp. 2005. Pedometer readings for estrous detection and as predictor for time of ovulation in dairy cattle. Theriogenology 64:1690-1703. https://doi.org/10.1016/j.theriogenology.2005.04.004
  34. Ruiz-Garcia, L., L. Lunadei, P. Barreiro, and J. Robla. 2009. A review of wireless sensor technologies and applications in agriculture and food industry: state-of-the-art and current trends. Sensors 9:4728-4750. https://doi.org/10.3390/s90604728
  35. Saint-Dizier, M., and S. Chastant-Maillard. 2012. Towards an automated detection of oestrus in dairy cattle. Reprod. Domest. Anim. 47:1056-1061 doi: 10.1111/j.1439-0531.2011.01971.x.
  36. Saumande, J. 2002. Electronic detection of oestrus in postpartum dairy cows: efficiency and accuracy of the DEC (showheat) system. Livest. Prod. Sci. 77:265-271. https://doi.org/10.1016/S0301-6226(02)00036-2
  37. Van Asseldonk, M. A. P. M., R. B. M. Huirne, and A. A. Dijkhuizen. 1998. Quantifying characteristics of information-technology applications based on expert knowledge for detection of oestrus and mastitis in dairy cows. Prev. Vet. Med. 36:273-286. https://doi.org/10.1016/S0167-5877(98)00096-8
  38. Wathes, C., H. Kristensen, J. Aerts, and D. Berckmans. 2008. Is precision livestock farming an engineer's daydream or nightmare, an animal's friend or foe, and a farmer's panacea or pitfall? Comput. Electron. Agric. 64:2-10. https://doi.org/10.1016/j.compag.2008.05.005
  39. Xu, Z. Z., D. J. McKnight, R. Vishwanath, C. J. Pitt, and L. J. Burton. 1998. Estrus detection using radiotelemetry or visual observation and tail painting for dairy cows on pasture. J. Dairy Sci. 81:2890-2896. https://doi.org/10.3168/jds.S0022-0302(98)75849-7

피인용 문헌

  1. Stress Detection and Classification of Laying Hens by Sound Analysis vol.28, pp.4, 2015, https://doi.org/10.5713/ajas.14.0654
  2. Invited review: The evolution of cattle bioacoustics and application for advanced dairy systems pp.1751-732X, 2018, https://doi.org/10.1017/S1751731117002646
  3. Fault Detection and Diagnosis of Railway Point Machines by Sound Analysis vol.16, pp.4, 2016, https://doi.org/10.3390/s16040549
  4. Automatic Recognition of Aggressive Behavior in Pigs Using a Kinect Depth Sensor vol.16, pp.5, 2016, https://doi.org/10.3390/s16050631
  5. Resource-Efficient Pet Dog Sound Events Classification Using LSTM-FCN Based on Time-Series Data vol.18, pp.11, 2018, https://doi.org/10.3390/s18114019
  6. Sound Noise-Robust Porcine Wasting Diseases Detection and Classification System Using Convolutional Neural Network vol.16, pp.5, 2018, https://doi.org/10.14801/jkiit.2018.16.5.1
  7. 움직임 벡터와 SVDD를 이용한 영상 감시 시스템에서 한우의 특이 행동 탐지 vol.2, pp.11, 2013, https://doi.org/10.3745/ktsde.2013.2.11.795
  8. A Cost-Effective Pigsty Monitoring System Based on a Video Sensor vol.8, pp.4, 2014, https://doi.org/10.3837/tiis.2014.04.018
  9. Internet Information Orientation: The Link to National Competitiveness on Internet vol.9, pp.8, 2013, https://doi.org/10.3837/tiis.2015.08.015
  10. Automated Detection of Cattle Mounting using Side-View Camera vol.9, pp.8, 2015, https://doi.org/10.3837/tiis.2015.08.024
  11. Recent advances in wearable sensors for animal health management vol.12, pp.None, 2017, https://doi.org/10.1016/j.sbsr.2016.11.004
  12. 질감 분석과 CNN을 이용한 잡음에 강인한 돼지 호흡기 질병 식별 vol.7, pp.3, 2018, https://doi.org/10.3745/ktsde.2018.7.3.91
  13. Potential for autonomous detection of lambing using global navigation satellite system technology vol.60, pp.9, 2013, https://doi.org/10.1071/an18654
  14. A Novel Method for Broiler Abnormal Sound Detection Using WMFCC and HMM vol.2020, pp.None, 2013, https://doi.org/10.1155/2020/2985478
  15. Field-Applicable Pig Anomaly Detection System Using Vocalization for Embedded Board Implementations vol.10, pp.19, 2013, https://doi.org/10.3390/app10196991
  16. Deep Learning-Based Cattle Vocal Classification Model and Real-Time Livestock Monitoring System with Noise Filtering vol.11, pp.2, 2013, https://doi.org/10.3390/ani11020357
  17. IoT Technologies for Livestock Management: A Review of Present Status, Opportunities, and Future Trends vol.5, pp.1, 2013, https://doi.org/10.3390/bdcc5010010
  18. Assessment of a non-invasive acoustic sensor for detecting cattle urination events vol.207, pp.None, 2013, https://doi.org/10.1016/j.biosystemseng.2021.05.003
  19. Development of Optimal Feature Selection and Deep Learning Toward Hungry Stomach Detection Using Audio Signals vol.32, pp.4, 2013, https://doi.org/10.1007/s40313-021-00727-8
  20. Technologies used at advanced dairy farms for optimizing the performance of dairy animals: A review vol.19, pp.4, 2013, https://doi.org/10.5424/sjar/2021194-17801
  21. An acoustic sensor technology to detect urine excretion vol.214, pp.None, 2013, https://doi.org/10.1016/j.biosystemseng.2021.12.004