DOI QR코드

DOI QR Code

Effects of Dietary Thiazolidinedione Supplementation on Growth Performance, Intramuscular Fat and Related Genes mRNA Abundance in the Longissimus Dorsi Muscle of Finishing Pigs

  • Chen, X. (Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Department of Animal Science, South China Agricultural University) ;
  • Feng, Y. (Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Department of Animal Science, South China Agricultural University) ;
  • Yang, W.J. (Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Department of Animal Science, South China Agricultural University) ;
  • Shu, G. (Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Department of Animal Science, South China Agricultural University) ;
  • Jiang, Q.Y. (Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Department of Animal Science, South China Agricultural University) ;
  • Wang, X.Q. (Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Department of Animal Science, South China Agricultural University)
  • Received : 2012.12.31
  • Accepted : 2013.02.01
  • Published : 2013.07.01

Abstract

The objective of this study was to investigate the effect of dietary supplementation with thiazolidinedione (TZD) on growth performance and meat quality of finishing pigs. In Experiment 1, 80 castrated finishing pigs (Large White${\times}$Landrace, BW = 54.34 kg) were randomly assigned to 2 treatments with 5 replicates of 8 pigs each. The experimental pigs in the 2 groups were respectively fed with a diet with or without a TZD supplementation (15 mg/kg). In Experiment 2, 80 castrated finishing pigs (Large White${\times}$Landrace, BW = 71.46 kg) were divided into 2 treatments as designed in Experiment 1, moreover, carcass evaluations were performed. The results from Experiment 1 showed that TZD supplementation could significantly decreased the average daily feed intake (ADFI) (p<0.05) during 0 to 28 d, without impairing the average daily gain (ADG) (p>0.05). In Experiment 2, the ADG was significantly increased by TZD supplementation during 14 to 28 d and 0 to 28 d (p<0.05) and the feed:gain ratio (F:G) was significantly decreased by TZD supplementation during 0 to 28 d (p<0.05). Compared with the control group, TZD group had significantly higher serum triglyceride (TG) concentration at 28h and serum high-density lipoprotein (HDL) levels at 14 d (p<0.05). Moreover, there was an apparent improvement in the marbling score (p<0.10) and intramuscular fat (IMF) content (p<0.10) of the longissimus dorsi muscle in pigs treated by TZD supplementation. Real-time RT-PCR analyses demonstrated that pigs of TZD group had higher mRNA abundance of $PPAR{\gamma}$ coactivator 1 (PGC-1) (p<0.05) and fatty acid-binding protein 3 (FABP3) (p<0.05) than pigs of control group. Taken together, these results suggested that dietary TZD supplementation could improve growth performance and increase the IMF content of finishing pigs through regulating the serum parameters and genes mRNA abundance involved in fat metabolism.

Keywords

References

  1. Abel, E. D., O. Peroni, J. K. Kim, Y. B. Kim, and O. Boss. 2001. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409:729-733. https://doi.org/10.1038/35055575
  2. Acharya, D., and R. Falik. 2009. Cardiovascular effects of thiazolidinediones: a review of the literature. South. Med. J. 102:51-56. https://doi.org/10.1097/SMJ.0b013e318189879f
  3. Bouraoui, L., L. Cruz-Garcia, J. Gutierrez, E. Capilla, and I. Navarro. 2012. Regulation of lipoprotein lipase gene expression by insulin and troglitazone in rainbow trout (Oncorhynchus mykiss) adipocyte cells in culture. Comp. Biochem. Physiol-Part A: Mol. Integr. Physiol. 161:83-88. https://doi.org/10.1016/j.cbpa.2011.09.008
  4. Cánovas, E., R. Quintanilla, B. Badaoui, C. Porredon, D. Gallardo, R. Pena, I. Díaz, and M. Amills. 2009. Pig HDL-binding protein (HDLBP) genotype is associated with intramuscular fat percentage. Livest. Sci. 126:298-301. https://doi.org/10.1016/j.livsci.2009.06.005
  5. Chabowski, A., M. Zendzian-Piotrowska, A. Nawrocki, and J. Gorski. 2011. Not only accumulation, but also saturation status of intramuscular lipids is significantly affected by $PPAR{\gamma}$ activation. Acta. Physiol. 205:145-158.
  6. Chawla, A., E. Schwarz, D. Dimaculangan, and M. Lazar. 1994. Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 135:798-800. https://doi.org/10.1210/en.135.2.798
  7. Chinetti, G., J. C. Fruchart, and B. taels. 2000. Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm. Res. 49:497-505. https://doi.org/10.1007/s000110050622
  8. Cho, K. H., M. J. Kim, G. J. Jeon, and H. Y. Chung. 2011. Association of genetic variants for FABP3 gene with back fat thickness and intramuscular fat content in pig. Mol. Biol. Rep. 38:2161-2166. https://doi.org/10.1007/s11033-010-0344-3
  9. Cordero, G., B. Isabel, D. Menoyo, A. Daza, J. Morales, C. Pineiro, and C. J. Lopez-Bote. 2010. Dietary CLA alters intramuscular fat and fatty acid composition of pig skeletal muscle and subcutaneous adipose tissue. Meat. Sci. 85:235-239. https://doi.org/10.1016/j.meatsci.2010.01.004
  10. Deng, J. P., F. Yang, Y. L. Yin, Z. Q. Liu, F. Y. Yan, Y. Z. Zhang, and Z. R. Tang. 2010. Effects of digestible lysine levels on growth performance, serum metabolites and carcass composition in barrow. J. Food Agric. Environ. 8:514-518.
  11. Furrnsinn, C., and W. Waldhausl. 2002. Thiazolidinediones: metabolic actions in vitro. Diabetologia 45:1211-1223. https://doi.org/10.1007/s00125-002-0899-1
  12. Gaullier, J. M., J. Halse, H. O. Hoivik, K. Hoye, C. Syvertsen, M. Nurminiemi, C. Hassfeld, A. Einerhand, M. O'Shea, and O. Gudmundsen. 2007. Six months supplementation with conjugated linoleic acid induces regional-specific fat mass decreases in overweight and obese. Br. J. Nutr. 97:550-560. https://doi.org/10.1017/S0007114507381324
  13. Gerbens, F., D. Koning, F. Harders, T. Meuwissen, L. Janss, M. Groenen, J. Veerkamp, J. Van. Arendonk, and M. Te. Pas. 2000. The effect of adipocyte and heart fatty acid-binding protein genes on intramuscular fat and backfat content in Meishan crossbred pigs. J. Anim. Sci. 78:552-559.
  14. Gerbens, F., A. Van. Erp, F. Harders, F. Verburg, T. Meuwissen, J. Veerkamp, and Te. Pas. M. 1999. Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs. J. Anim. Sci. 77:846-852.
  15. Geng, M. M., T. J. Li, X. F. Kong, X. Y. Song, W. Y. Chu, R. L. Huang, Y. L. Yin, and G. Y. Wu. 2011. Reduced expression of intestinal N-acetylglutamate synthase in suckling piglets: a novel molecular mechanism for arginine as a nutritionally essential amino acid for neonates. Amino Acids 40:1513-1522. https://doi.org/10.1007/s00726-010-0761-6
  16. George, R. B. Jr., B. K. Natasha, F. B. Gary, E. C. Corinne, L. Yiming, M. G. Laura, S. Joselita, P. Limin, P. Francisco, U. Denise, S. Dawn, and E. U. Guillermo. 2012. The effects of thiazolidinediones on human bone marrow stromal cell differentiation in vitro and in thiazolidinedione-treated patients with type 2 diabetes. Transl. Res. In Press. 161:145-155.
  17. Hallakou, S., L. Doare, F. Foufelle, M. Kergoat, M. Guerre-Millo, M. Berthault, I. Dugail, J. Morin, J. Auwerx, and P. Ferre. 1997. Pioglitazone induces in vivo adipocyte differentiation in the obese Zucker fa/fa rat. Diabetes 46:1393-1399. https://doi.org/10.2337/diabetes.46.9.1393
  18. Hausman G., S. Poulos, T. Pringle, and M. Azain. 2008. The influence of thiazolidinediones on adipogenesis in vitro and in vivo: potential modifiers of intramuscular adipose tissue deposition in meat animals. J. Anim. Sci. 86:236-243.
  19. He, Q., X. Kong, G. Wu, P. Ren, H. Tang, F. Hao, R. Huang, T. Li, B. Tan, and P. Li. 2009. Metabolomic analysis of the response of growing pigs to dietary L-arginine supplementation. Amino Acids 37:199-208. https://doi.org/10.1007/s00726-008-0192-9
  20. Hondares, E., O. Mora, P. Yubero, M. R. de la Concepcion, R. Iglesias, M. Giralt, and F. Villarroya. 2006. Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1$\alpha$ gene transcription: an autoregulatory loop controls PGC-1$\alpha$ expression in adipocytes via peroxisome proliferator-activated receptor-$\gamma$ coactivation. Endocrinology 147:2829-2838. https://doi.org/10.1210/en.2006-0070
  21. House, R., J. Cassady, E. Eisen, M. McIntosh, and J. Odle. 2005. Conjugated linoleic acid evokes de-lipidation through the regulation of genes controlling lipid metabolism in adipose and liver tissue. Obes. Rev. 6:247-258. https://doi.org/10.1111/j.1467-789X.2005.00198.x
  22. Hovenier, R., E. Kanis, T. Van. Asseldonk, and N. Westerink. 1992. Genetic parameters of pig meat quality traits in a halothane negative population. Livest. Prod. Sci. 32:309-321. https://doi.org/10.1016/0301-6226(92)90002-L
  23. Hovenier, R., E. Kanis, T. Van. Asseldonk, and N. Westerink. 1993. Breeding for pig meat quality in halothane-negative populations a review. Pig News Info. 14:17-25.
  24. Kang, K., W. Liu, J. K. Albright, Y. Park, and M. W. Pariza. 2003. trans-10, cis-12 CLA inhibits differentiation of 3T3-L1 adipocytes and decreases PPAR [gamma] expression. Biochem. Biophys. Res. Commun. 303:795-799. https://doi.org/10.1016/S0006-291X(03)00413-3
  25. Jobgen, W. S., S. K. Fried, W. J. Fu, C. J. Meininger, and G. Wu. 2006. Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J. Nutr. Biochem. 17:571-588. https://doi.org/10.1016/j.jnutbio.2005.12.001
  26. Lehmann, J. M., L. B. Moore, T. A. Smith-Olive.r, W. O. Wilkison, T. M. Willson, and S. A. Kliewer. 1995. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor $\gamma$(PPAR$\gamma$). J. Biol. Chem. 270: 12953-12956. https://doi.org/10.1074/jbc.270.22.12953
  27. Lessard, S. J., S. L. L. Giudice, W. Lau, J. J. Reid, N. Turner, M. A. Febbraio, J. A. Hawley, and M. J. Watt. 2004. Rosiglitazone enhances glucose tolerance by mechanisms other than reduction of fatty acid accumulation within skeletal muscle. Endocrinology 145:5665-5670. https://doi.org/10.1210/en.2004-0659
  28. Li, F. N., L. L. Li, H. S. Yang, X. X. Yuan, B. Zhang, M. M. Geng, C. W. Xiao, and Y. L. Yin. 2011a. Regulation of soy isoflavones on weight gain and fat percentage: evaluation in a Chinese Guangxi minipig model. Animal 5:1903-1908. https://doi.org/10.1017/S1751731111001194
  29. Li, F. N., H. S. Yang, Y. H. Duan, and Y. L. Yin. 2011b. Myostatin regulates preadipocyte differentiation and lipid metabolism of adipocyte via ERK1/2. Cell Biol. Int. 35:1141-1146. https://doi.org/10.1042/CBI20110112
  30. Li, L. L., Z. P. Hou, Y. L. Yin, Y. H. Liu, D. X. Hou, B. Zhang, G. Y. Wu, S. W. Kim, M. Z. Fang, C. B. Yang, X. F. Kong, Z. R. Tang, H. Z. Peng, D. Deng, Z. Y. Deng, M. Y. Xie, H. Xiong, P. Kang, and S. X. Wang. 2007. Intramuscular administration of zinc metallothionein to preslaughter stressed pigs improves anti-oxidative status and pork quality. Asian-Aust. J. Anim. Sci. 20:761-767. https://doi.org/10.5713/ajas.2007.761
  31. Liu, X. D., X. Wu, Y. L. Yin, Y. Q. Liu, M. M. Geng, H. S. Yang, B. Francois, and G. Y. Wu. 2012. Effects of dietary L-arginine or N-carbamylglutamate supplementation during late gestation of sows on the miR-15b/16, miR-221/222, VEGF and iNOS expression in umbilical vein. Amino Acids. 42:2111-2119. https://doi.org/10.1007/s00726-011-0948-5
  32. Ma, X., Y. Lin, Z. Jiang, C. Zheng, G. Zhou, D. Yu., T. Cao, J. Wang, and. F. Chen. 2010. Dietary arginine supplementation enhances antioxidative capacity and improves meat quality of finishing pigs. Amino Acids 38:95-102. https://doi.org/10.1007/s00726-008-0213-8
  33. MacKellar, J., S. W. Cushman, and V. Periwal. 2009. Differential Effects of Thiazolidinediones on Adipocyte Growth and Recruitment in Zucker Fatty Rats. Plos One. 4:e8196. https://doi.org/10.1371/journal.pone.0008196
  34. Mayerson, A. B., R. S. Hundal, S. Dufour, V. Lebon, D. Befroy, G. W. Cline, S. Enocksson, S. E. Inzucchi, G. I. Shulman, and K. F. Petersen. 2002. The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes 51:797-802. https://doi.org/10.2337/diabetes.51.3.797
  35. Meadus, W., R. MacInnis, and M. Dugan. 2002. Prolonged dietary treatment with conjugated linoleic acid stimulates porcine muscle peroxisome proliferator activated receptor gamma and glutamine-fructose aminotransferase gene expression in vivo. J. Mol. Endocrinol. 28:79-86. https://doi.org/10.1677/jme.0.0280079
  36. Miller, J. R., P. Siripurkpong, J. Hawes, A. Majdalawieh, H. S. Ro, and R. S. McLeod. 2008. The trans-10, cis-12 isomer of conjugated linoleic acid decreases adiponectin assembly by PPARgamma-dependent and PPARgamma-independent mechanisms. J. Lipid Res. 49:550-562. https://doi.org/10.1194/jlr.M700275-JLR200
  37. Miyazaki, Y., A. Mahankali, M. Matsuda, S. Mahankali, J. Hardies, K. Cusi, L. J.Mandarino, and R. A. DeFronzo. 2002. Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J. Clin. Endocrinol. Metab. 87:2784-2791. https://doi.org/10.1210/jc.87.6.2784
  38. Muurling, M., R. P. Mensink, H. Pijl, J. A. Romijn, L. M. Havekes, and P. J. Voshol. 2003. Rosiglitazone improves muscle insulin sensitivity, irrespective of increased triglyceride content in ob/ob mice. Metabolism 52:1078-1083. https://doi.org/10.1016/S0026-0495(03)00109-4
  39. Poulos, S., and G. Hausman. 2006. A comparison of thiazolidinedione-induced adipogenesis and myogenesis in stromal-vascular cells from subcutaneous adipose tissue or semitendinosus muscle of postnatal pigs. J. Anim. Sci. 84: 1076-1082.
  40. Reginato, M. J., S. T. Bailey, S. L. Krakow, C. Minami, S. Ishii, H. Tanaka, and M. A. Lazar. 1998. A potent antidiabetic thiazolidinedione with unique peroxisome proliferator-activated receptor $\gamma$-activating properties. J. Biol. Chem. 273: 32679-32684. https://doi.org/10.1074/jbc.273.49.32679
  41. SAS Institute. 2004. User's Guide. Release 9.1 Edn. SAS institute Inc., Cary. NC..
  42. Schwab, C., T. Baas, K. Stalder, and J. Mabry. 2006. Effect of long-term selection for increased leanness on meat and eating quality traits in Duroc swine. J. Anim. Sci. 84:1577-1583.
  43. Singh, N., H. Chae, I. Hwang, Y. Yoo, C. Ahn, S. Lee, H. Lee, H. Park, and H. Chung. 2007. Transdifferentiation of porcine satellite cells to adipoblasts with ciglitizone. J. Anim. Sci. 85: 1126-1135. https://doi.org/10.2527/jas.2006-524
  44. Sisk, M. B., D. B. Hausman, R. J. Martin, and M. J. Azain. 2001. Dietary conjugated linoleic acid reduces adiposity in lean but not obese Zucker rats. J. Nutr. 131:1668-1674.
  45. Souza, C. J., M. Eckhardt, K. Gagen, M. Dong, W. Chen, D. Laurent, and B. Burkey. F. 2001. Effects of pioglitazone on adipose tissue remodeling within the setting of obesity and insulin resistance. Diabetes 50:1863-1871. https://doi.org/10.2337/diabetes.50.8.1863
  46. Tan, B., Y. Yin, Z. Liu, X. Li, H. Xu, X. Kong, R. Huang, W.Tang, I. Shinzato, and S. B. Smith. 2009. Dietary L-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids 37:169-175. https://doi.org/10.1007/s00726-008-0148-0
  47. Tan, B., Y. Yin, Z. Liu, W. Tang, H. Xu, X. Kong, X. Li, K. Yao, W. Gu, and S. B. Smith. 2011. Dietary L-arginine supplementation differentially regulates expression of lipid-metabolic genes in porcine adipose tissue and skeletal muscle. J. Nutr. Biochem. 22:441-445. https://doi.org/10.1016/j.jnutbio.2010.03.012
  48. Tang, Z. R., L. Y. Yin, C. M. Nyachoti, R. L. Huang, T. J. Li, C. B. Yang, X. J. Yang, J. Gong, J. Peng, D. S. Qi, J. J. Xing, Z. H. Sun, and M. Z. Fan, 2005. Effect of dietary supplementation of chitosan and galacto-mannan- oligosaccharide on serum parameters and the insulin like growth factor-I mRNA expression in early-weaned piglets. Domest. Anim. Endocrin. 28:430-441. https://doi.org/10.1016/j.domaniend.2005.02.003
  49. Teboul, L., D. Gaillard, L. Staccini, H. Inadera, E. Z. Amri, and P. A. Grimaldi. 1995. Thiazolidinediones and fatty acids convert myogenic cells into adipose-like cells. J. Biol. Chem. 270: 28183-28187. https://doi.org/10.1074/jbc.270.47.28183
  50. Todd, M. K., M. J. Watt, J. Le, A. L. Hevener, and L. P. Turcotte. 2007. Thiazolidinediones enhance skeletal muscle triacylglycerol synthesis while protecting against fatty acid-induced inflammation and insulin resistance. Am. J. Physiol-Endocrinol. Metab. 292:E485-E493.
  51. Tontonoz, P., and B. M. Spiegelman. 2008. Fat and beyond: the diverse biology of PPAR$\gamma$. Annu. Rev. Biochem. 77:289-312. https://doi.org/10.1146/annurev.biochem.77.061307.091829
  52. Vasilijevic, A., L. Vojcic, I. Dinulovic, B. Buzadzic, A. Korac, V. Petrovic, A. Jankovic, and B. Korac. 2010. Expression pattern of thermogenesis-related factors in interscapular brown adipose tissue of alloxan-treated rats: Beneficial effect of l-arginine. Nitric Oxide 23:42-50. https://doi.org/10.1016/j.niox.2010.04.001
  53. West, D. B., J. P. Delany, P. M. Camet, F. Blohm, A. A. Truett, and J. Scimeca. 1998. Effects of conjugated linoleic acid on body fat and energy metabolism in the mouse. Am. J. Physiol-Regul. Intergr. Physiol. 275:R667-R672.
  54. Wu, X., Y. L. Yin, T. J. Li, L. Wang, Z. Ruan, Z. Q. Liu, and Y. Q. Hou, 2010. Dietary protein, energy and arginine affect LAT1 expression in forebrain white matter differently. Animal 4: 1518-1521. https://doi.org/10.1017/S1751731110000534
  55. Wu, Z., N. Bucher, and S. R. Farmer. 1996. Induction of peroxisome proliferator-activated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPbeta, C/EBPdelta, and glucocorticoids. Mol. Cell. Biol. 16:4128-4136.
  56. Wu, Z., Y. Xie, R. F. Morrison, N. Bucher, and S. R. Farmer. 1998. PPARgamma induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPalpha during the conversion of 3T3 fibroblasts into adipocytes. J. Clin. Invest. 101:22-32. https://doi.org/10.1172/JCI1244
  57. Yang, C. B., D. M. Albin, Z. R. Wang, B. Stoll, D. Lackeyram, K. C. Swanson, Y. L. Yin, K. A. Tappenden, Y. Mine, R. Y. Yada, D. G. Burrin, and M. Z. Fan. 2011. Apical Na+-D-glucose co-transporter 1 (SGLT1) activity and protein abundance are expressed along the jejunal crypt-villus axis in the neonatal pig. Am. J. Physiol. Gastrointest. Liver Physiol. 300:G60-G70. https://doi.org/10.1152/ajpgi.00208.2010
  58. Yang, C. B., A. K. Li, Y. L. Yin, R. L. Huang, T. J. Li, L. L. Li, Y. P. Liao, Z. Y. Deng, J. Zhang, B. Wang, Y. G. Zhang, X. J. Yang, J. Peng, and M. Z. Fan. 2005. Effects of dietary supplementation of cysteamine on growth performance, carcass quality, serum hormones and gastric ulcer in finishing pigs. J. Sci. Food. Agric. 85:1947-1952. https://doi.org/10.1002/jsfa.2123
  59. Yao, K., L. Y. L. Yin, X. L. Li, P. B. Xi, J. J. Wang, J. Lei, Y. Q. Hou, and G. Y. Wu. 2012. Alpha-ketoglutarate inhibits glutamine degradation and enhances protein synthesis in intestinal porcine epithelial cells. Amino Acids 42:2491-2500. https://doi.org/10.1007/s00726-011-1060-6
  60. Yin, F. G., Z. Z. Zhang, J. Huang, and Y. L. Yin. 2010. Digestion rate of dietary starch affects systemic circulation of amino acids in weaned pigs. Br. J. Nutr. 103:1404-1412. https://doi.org/10.1017/S0007114509993321
  61. Yin, Y. L., S. K. Baidoo, J. L. L. Boychul, and H. H. Simmins. 2001. Performance and carcass characteristics of pigs and broiler fed diets containing micronized barley, ground barley, wheat and maize. J. Sci. Food. Agric. 81:1487-1497. https://doi.org/10.1002/jsfa.964

Cited by

  1. -β-D-glucopyranoside (wistin) is a peroxisome proliferator-activated receptor γ (PPARγ) agonist that stimulates adipocyte differentiation vol.87, pp.11, 2016, https://doi.org/10.1111/asj.12552
  2. Structure and Functional Analysis of Promoters from Two Liver Isoforms of CPT I in Grass Carp Ctenopharyngodon idella vol.18, pp.11, 2017, https://doi.org/10.3390/ijms18112405
  3. Dietary Supplementation with Pioglitazone Hydrochloride and Chromium Methionine Improves Growth Performance, Meat Quality, and Antioxidant Ability in Finishing Pigs vol.66, pp.17, 2013, https://doi.org/10.1021/acs.jafc.8b01176
  4. The potential of brown adipogenesis and browning in porcine bone marrow-derived mesenchymal stem cells1 vol.96, pp.9, 2018, https://doi.org/10.1093/jas/sky230
  5. GROWTH AND DEVELOPMENT SYMPOSIUM: STEM AND PROGENITOR CELLS IN ANIMAL GROWTH: The regulation of beef quality by resident progenitor cells1 vol.97, pp.6, 2013, https://doi.org/10.1093/jas/skz111
  6. An Insight into the Synthesis and SAR of 2,4-Thiazolidinediones (2,4-TZD) as Multifunctional Scaffold: A Review vol.20, pp.4, 2020, https://doi.org/10.2174/1389557519666191029102838
  7. Dietary Supplementation with Pioglitazone Hydrochloride and Resveratrol Improves Meat Quality and Antioxidant Capacity of Broiler Chickens vol.10, pp.7, 2013, https://doi.org/10.3390/app10072452
  8. Dietary supplementation with pioglitazone hydrochloride and l-carnosine improves the growth performance, muscle fatty acid profiles and shelf life of yellow-feathered broiler chickens vol.7, pp.1, 2021, https://doi.org/10.1016/j.aninu.2020.05.011