DOI QR코드

DOI QR Code

Effect of Carbohydrate Source and Cottonseed Meal Level in the Concentrate on Feed Intake, Nutrient Digestibility, Rumen Fermentation and Microbial Protein Synthesis in Swamp Buffaloes

  • Wanapat, Metha (Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University) ;
  • Pilajun, R. (Department of Animal Science, Faculty of Agriculture, Ubon Ratchathani University) ;
  • Polyorach, S. (Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University) ;
  • Cherdthong, A. (Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University) ;
  • Khejornsart, P. (Agro-Bioresources, Faculty of Natural Resources and Agro-Industry, Kasetsart University Chalermphakiat Sakon Nakhon province campus) ;
  • Rowlinson, P. (School of Agriculture, Food and Rural Development Agriculture Building, Newcastle University)
  • 투고 : 2013.01.10
  • 심사 : 2013.03.11
  • 발행 : 2013.07.01

초록

The objective of this study was to investigate the effect of carbohydrate source and cottonseed meal level in the concentrate on feed intake, nutrient digestibility, rumen fermentation and microbial protein synthesis in swamp buffaloes. Four, 4-yr old rumen fistulated swamp buffaloes were randomly assigned to receive four dietary treatments according to a $2{\times}2$ factorial arrangement in a $4{\times}4$ Latin square design. Factor A was carbohydrate source; cassava chip (CC) and CC+rice bran at a ratio 3:1 (CR3:1), and factor B was level of cottonseed meal (CM); 109 g CP/kg (LCM) and 328 g CP/kg (HCM) in isonitrogenous diets (490 g CP/kg). Buffaloes received urea-treated rice straw ad libitum and supplemented with 5 g concentrate/kg BW. It was found that carbohydrate source did not affect feed intake, nutrient intake, digested nutrients, nutrient digestibility, ammonia nitrogen concentration, fungi and bacterial populations, or microbial protein synthesis (p>0.05). Ruminal pH at 6 h after feeding and the population of protozoa at 4 h after feeding were higher when buffalo were fed with CC than in the CR3:1 treatment (p<0.05). Buffalo fed with HCM had a lower roughage intake, nutrient intake, population of total viable and cellulolytic bacteria and microbial nitrogen supply than the LCM fed group (p<0.05). However, nutrient digestibility, ruminal pH, ammonia concentration, population of protozoa and fungi, and efficiency of microbial protein synthesis were not affected by cottonseed meal levels (p>0.05). Based on this experiment, concentrate with a low level of cottonseed meal could be fed with cassava chips as an energy source in swamp buffalo receiving rice straw.

키워드

참고문헌

  1. Abou Akkada, A. R., and B. H. Howard. 1960. The biochemistry of rumen protozoa. 3-The carbohydrate metabolism of Entodinium. Biochem. J. 76:445-449.
  2. AOAC. 1991. Official methods of analysis. Association of Official Analysis Chemists, DC. p. 1230.
  3. AOAC. 1995. Official method of analysis, 16th ed. Animal Feeds: Association of Official Analytical Chemists, Virginia. pp. 1-18.
  4. Agricultural Research Council. 1984. The nutrient requirements of ruminant livestock. Supplement No. 1., Commonwealth Agricultural Bureaux, Farnham Royal, UK. pp. 38-39.
  5. Bach, A., S. Calsamiglia, and M. D. Stern. 2005. Nitrogen metabolism in the rumen. J. Dairy Sci. 88:E9-E21. https://doi.org/10.3168/jds.S0022-0302(05)73133-7
  6. Bauchop, T. 1979. Rumen anaerobic fungi of cattle and sheep. Appl. Environ. Microbiol. 38:148-158.
  7. Bremmer, J. M., and D. R. Keeney. 1965. Steam distillation methods to determination of ammonium, nitrate and nitrite. Anal. Chem. Acta. 32:485-495. https://doi.org/10.1016/S0003-2670(00)88973-4
  8. Bryant, M. P., and I. M. Robinson. 1961. Studies on the nitrogen requirements of some ruminal cellulolytic bacteria. Appl. Microbiol. 9:96-103.
  9. Chanjula, P., M. Wanapat, C. Wachirapakorn, and P. Rowlinson. 2004. Effect of synchronizing starch sources and protein (NPN) in the rumen on feed intake, rumen microbial fermentation, nutrient utilization and performance of lactating dairy cows. Asian-Aust. J. Anim. Sci. 17:1400-1410. https://doi.org/10.5713/ajas.2004.1400
  10. Chanjula, P., M. Wanapat, C. Wachirapakorn, S. Uriyapongson, and P. Rowlinson. 2003. Ruminal degradability of tropical feeds and their potential use in ruminant diets. Asian-Aust. J. Anim. Sci. 16:211-216. https://doi.org/10.5713/ajas.2003.211
  11. Chantaprasarn, N., and M. Wanapat. 2008. Effects of sunflower oil supplementation in cassava hay based-diets for lactating dairy cows. Asian-Aust. J. Anim. Sci. 21:42-50. https://doi.org/10.5713/ajas.2008.60421
  12. Chen, X. B., and M. J. Gomes. 1995. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine perivatives -an overview of the technical details. Occasional Publication 1992. International Feed Resources Unit, Rowel Research Institude, Aberdeen.
  13. Chen, X. B., D. J. Kyle, and E. R. Orskov. 1993. Measurement of allantoin in urine and plasma by high-performance liquid chromatography with pre-column derivatization. J. Chromathogr. B. Biomed. Sci. Appl. 617:241-247. https://doi.org/10.1016/0378-4347(93)80494-O
  14. Cherdthong, A., M. Wanapat, P. Kongmun, R. Pilajun, and P. Khejornsart. 2010. Rumen fermentation, microbial protein synthesis and cellulolytic bacterial population of swamp buffaloes as affected by roughage to concentrate ratio. J. Anim. Vet. Adv. 9:1667-1675. https://doi.org/10.3923/javaa.2010.1667.1675
  15. Church, D. C. 1969. Digestive Physiology and Nutrition of Ruminants. Volume I. Oregon State University. Corvallis. 316 p.
  16. Clark, J. H., T. H. Klusmeyer, and M. R. Cameron. 1992. Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows. J. Dairy Sci. 75:2304-2323. https://doi.org/10.3168/jds.S0022-0302(92)77992-2
  17. Clark, J. H., M. R. Murphy, and B. A. Crooker. 1987. Supplying the protein needs of dairy cattle from by-product feeds. J. Dairy Sci. 70:1092-1109. https://doi.org/10.3168/jds.S0022-0302(87)80116-9
  18. Dehority, B. A., and P. A. Tirabasso. 1998. Effect of ruminal cellulolytic bacterial concentrations on in situ digestion of forage cellulose. J. Anim. Sci. 76:2905-2911.
  19. Devendra, C. 1985. Comparative nitrogen utilization in Malaysia Swamp buffaloes and Kedah-Kelanton cattle. In Proc. The 7th AFAR Int. Workshop. (Ed. R. Diox), IDPD, Canberra, Australia.
  20. Eadie, J. M., J. S. Hyldgaard-Jensen, O. R. Mann, S. Reid, and P. G. Whitelaw. 1970. Observations on the microbiology and biochemistry of the rumen in cattle given different quantities of a pelleted barley ration. Br. J. Nutr. 24:157-163. https://doi.org/10.1079/BJN19700018
  21. Eadie, J. M., and S. O. Mann. 1970. Development of the rumen microbial population: High starch diets and instability. In: Physiology of Digestion and Metabolism in the Ruminant (Ed. A. T. Philipson). Oriel Press, Newcastle Upon Tyne. pp. 335-347.
  22. Erfle, J. D., F. D. Sauer, and S. Mahadevan. 1977. Effect of ammonia concentration on activity of enzymes of ammonia assimilation and on synthesis of amino acids by mixed rumen bacteria in continuous culture. J. Dairy Sci. 60:1064-1072. https://doi.org/10.3168/jds.S0022-0302(77)83989-1
  23. Etman, K. E. I., I. M. Soliman, I. A. S. Abou-Selim, and A. A. Soliman. 1993. Cassava (Manihot esculenta, crantz.) in rations of buffaloes: E. Effect of partial replacement of yellow corn by cassava pellets in rations of growing buffaloes calves. In: Prospects of buffalo production in the Mediterranean and the Middle East, (Ed. M. Shafie, A. H. Barkawi, S. A. Ibrahim and R. R. Sadek). Cairo, Egypt. Pudoc Scientific Publishers, Wageningen. pp. 302-304.
  24. Galyean, M. 1989. Laboratory procedure in animal nutrition research. Department of Animal and Life Science. New Mexico State University. p. 193.
  25. Granum, G., M. Wanapat, P. Pakdee, C. Wachirapakorn, and W. Toburan. 2007. A comparative study on the effect of cassava hay supplementation in swamp buffaloes (Bubalus bubalis) and cattle (Bos indicus). Asian-Aust. J. Anim. Sci. 20:1389-1396. https://doi.org/10.5713/ajas.2007.1389
  26. Grings, E. E., R. E. Roffler, and D. P. Deitelhoff. 1991. Response of dairy cows in early lactation to additions of cottonseed meal in alfalfa-based diets. J. Dairy Sci. 74:2580-2587. https://doi.org/10.3168/jds.S0022-0302(91)78436-1
  27. Firkins, J. L. 1996. Maximizing microbial protein synthesis in the rumen. J. Nurtr. 126:1347s-1354s.
  28. Firkins, J. L., A. N. Hristov, M. B. Hall, G. A. Varga, and N. R. St-Pierre. 2006. Integration of ruminal metabolism in dairy cattle. J. Dairy Sci. 89:E31-E51. https://doi.org/10.3168/jds.S0022-0302(06)72362-1
  29. Hungate, R. E. 1966. The rumen and its microbes. Academic Press. New York and London. p. 533.
  30. Hungate, R. E. 1969. A roll tube method for cultivation of strict anaerobes. In: Methods in Microbiology, edited by Norris (Ed. J. R. Norris and D. W. Ribbons), New York. Academic. NY. pp. 313.
  31. Joblin, K. N. 1981. Isolation, enumeration and maintenance of rumen anaerobic fungi in roll tubes. Appl. Environ. Microbiol. 42:1119-1122.
  32. Khampa, S., M. Wanapat, C. Wachirapakorn, N. Nontaso, and M. Wattiaux. 2006. Effects of urea level and sodium DL-malate in concentrate containing high cassava chip on ruminal fermentation efficiency, microbial protein synthesis in lactating dairy cows raised under tropical condition. Asian-Aust. J. Anim. Sci. 19:837-841. https://doi.org/10.5713/ajas.2006.837
  33. Lyle, R. R., R. R. Johnson, J. V. Wilhite, and W. R. Backus. 1981. Ruminal characteristics insteersas affected by adaptation from forage to all-concentrate diets. J. Anim. Sci. 53:1383-1388.
  34. Mendoza, G. D., R. A. Britton, and R. A. Stock. 1993. Influence of ruminal protozoa on site and extent of starch digestion and ruminal fermentation. J. Anim. Sci. 71:1572-1578.
  35. National Research Council. 2001. Nutrient requirements of dairy cattle, 7th rev. ed. Washington, D.C.: National Academy Press. p. 408.
  36. Promkot, C., M. Wanapat, C. Wachirapakorn, and C. Navanukraw. 2007. Influence of sulfur on fresh cassava foliage and cassava hay incubated in rumen fluid of beef cattle. Asian-Aust. J. Anim. Sci. 20:1424-1432. https://doi.org/10.5713/ajas.2007.1424
  37. Richardson, J. M., R. G. Wilkinson, and L. A. Sinclair. 2003. Synchrony of nutrient supply to the rumen and dietary energy source and their effects on the growth and metabolism of lambs. J. Anim. Sci. 81:1332-1347.
  38. Russell, J. B., and J. L. Rychlik. 2001. Factors that alter rumen microbial ecology. Science 292:1119-1122. https://doi.org/10.1126/science.1058830
  39. Samuel, M., S. Sagathewan, J. Thomas, and G. Mathen. 1997. An HPLC method for estimation of volatile fatty acids of ruminal fluid. Indian J. Anim. Sci. 67:805-807.
  40. SAS. User's Guide: Statistic, Version 5. Edition. 1996. SAS. Inst Cary, N.C.
  41. Sommart, K., M. Wanapat, P. Rowlinson, and D. S. Parker. 1997. The effects of nonstructural carbohydrate and dietary protein on feed intake, ruminal fermentation and cow performance. In: Proceedings of the British Society of Animal Science, March 1997. British Society of Animal, Scarborough. pp. 97-98.
  42. Stern, M. D., and W. H. Hoover. 1979. Methods for determining and factors affecting rumen microbial protein synthesis: a review. J. Anim. Sci. 49:1590-1603.
  43. Slyter, L. L., R. R. Oltjen, D. L. Kern, and F. C. Blank, 1970. Influence of type and level of grain and diethylstilbestrol on the rumen microbial populations of steers fed all-concentrate diets. J. Anim. Sci. 31:996-1002.
  44. Tajima, M., R. I. Aminov, T. H. Nagamine, M. M. Nakamura, and Y. Benno. 2001. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microbiol. 67:2766-2774. https://doi.org/10.1128/AEM.67.6.2766-2774.2001
  45. Vance, R. D., R. L. Preston, E. W. Klosterman, and V. R. Cahill. 1972. Utilization of whole shelled and crimped corn grain with varying proportions of corn silage by growing-finishing steers. J. Anim. Sci. 35:598-605.
  46. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods of dietary fiber, neutral detergent fiber and non-starch carbohydrates in relation to animal nutrition. J. Dairy Sci. 74: 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  47. Wanapat, M. 2003. Manipulation of cassava cultivation and utilization to improve protein to energy biomass for livestock feeding in the tropics. Asian-Aust. J. Anim. Sci. 16:463-472. https://doi.org/10.5713/ajas.2003.463
  48. Wanapat, M. 2009. Potential uses of local feed resources for ruminants. Trop. Anim. Health Prod. 41:1035-1049. https://doi.org/10.1007/s11250-008-9270-y
  49. Wanapat, M., and S. Khampa. 2007. Effect of levels of supplementation of concentrate containing high levels of cassava chip on rumen ecology, microbial N supply and digestibility of nutrients in beef cattle. Asian-Aust. J. Anim. Sci. 20:75-81.
  50. Wanapat, M., N. Nontaso, C. Yuangklang, S. Wora-anu, A. Ngarmsang, C. Wachirapakorn, and P. Rowlinson. 2003. Comparative study between swamp buffalo and native cattle in feed digestibility and potential transfer of buffalo rumen digesta into cattle. Asian-Aust. J. Anim. Sci. 16:504-510. https://doi.org/10.5713/ajas.2003.504
  51. Wanapat, M., R. Pilajun, and P. Kongmun. 2009. Ruminal ecology of swamp buffalo as influenced by dietary sources. Anim. Feed Sci. Technol. 151:205-214. https://doi.org/10.1016/j.anifeedsci.2009.01.017
  52. Wanapat, M., S. Foiklang, P. Rowlinson, and R. Pilajun. 2012. Effect of carbohydrate sources and cotton seed meal in the concentrate: II. Feed intake, nutrient digestibility, rumen fermentation and microbial protein synthesis in beef cattle. Trop. Anim. Health Prod. 44:35-42. https://doi.org/10.1007/s11250-011-0014-z
  53. Wanapat, M., N. Anantasook, P. Rowlinson, R. Pilajun, and P. Gunun. 2013. Effect of carbohydrate sources and levels of cotton seed meal in concentrate on feed intake, nutrient digestibility, rumen fermentation and microbial protein synthesis in young dairy bulls. Asian-Aust. J. Anim. Sci. 26: 529-536. https://doi.org/10.5713/ajas.2012.12607
  54. Wanapat, M., R. Pilajun, and P. Rowlinson. 2012. Effect of carbohydrate source and cottonseed meal level in the concentrate: IV. Feed intake, rumen fermentation and milk production in milking cows. Trop. Anim. Health Prod. DOI 10.1007/s11250-012-0238-6.
  55. Wanapat, M., and P. Rowlinson. 2007. Nutrition and feeding of swamp buffalo: feed resources and rumen approach. Italian J. Anim. Sci. 6 (Suppl. 1): 67-73.
  56. Wanapat, M., and C. Wachirapakorn. 1990. Utilization of roughage and concentrate by feedlot swamp buffaloes Bubalus bubalis. Asian-Aus. J. Anim. Sci. 3:195-203. https://doi.org/10.5713/ajas.1990.195
  57. Wang, Y. H., M. Xua, F. N. Wang, Z. P. Yu, J. H. Yao, L. S. Zan, and F. X. Yang. 2009. Effect of dietary starch on rumen and small intestine morphology and digesta pH in goats. Livest. Sci. 122:48-52. https://doi.org/10.1016/j.livsci.2008.07.024
  58. Wora-anu, S. 2006. Study on predominant ruminal cellulolytic bacteria in ruminants under various rumen ecology. Ph.D. Thesis. Khon Kaen University, Khon Kean.
  59. Wora-Anu, S., M. Wanapat, C. Wachirapakorn, and N. Nontaso. 2007. Effect of roughage sources on cellulolytic bacteria and rumen ecology of beef cattle. Asian-Aust. J. Anim. Sci. 20:1705-1712. https://doi.org/10.5713/ajas.2007.1705

피인용 문헌

  1. Microorganisms in the rumen and reticulum of buffalo (Bubalus bubalis) fed two different feeding systems vol.9, pp.1, 2016, https://doi.org/10.1186/s13104-016-2046-y
  2. Effect of high and low roughage total mixed ration diets on rumen metabolites and enzymatic profiles in crossbred cattle and buffaloes vol.10, pp.6, 2017, https://doi.org/10.14202/vetworld.2017.616-622
  3. Feeding tropical dairy cattle with local protein and energy sources for sustainable production vol.46, pp.1, 2018, https://doi.org/10.1080/09712119.2017.1288627
  4. Response of Selected Heifer Buffalo to Feed Improvement in Bombana Regency, Indonesia vol.17, pp.12, 2018, https://doi.org/10.3923/pjn.2018.683.688
  5. Nitrogen balance, production performance, and plasma metabolites of lactating buffaloes in response to varying dietary protein levels vol.53, pp.4, 2021, https://doi.org/10.1007/s11250-021-02883-0