DOI QR코드

DOI QR Code

Development of Appropriate Fibrolytic Enzyme Combination for Maize Stover and Its Effect on Rumen Fermentation in Sheep

  • Bhasker, T. Vijay (Department of Animal Nutrition, Indian Veterinary Research Institute) ;
  • Nagalakshmi, D. (Department of Animal Nutrition, College of Veterinary Science) ;
  • Rao, D. Srinivasa (Department of Animal Nutrition, College of Veterinary Science)
  • Received : 2012.10.23
  • Accepted : 2012.12.27
  • Published : 2013.07.01

Abstract

In vitro studies were undertaken to develop an appropriate fibrolytic enzymes cocktail comprising of cellulase, xylanase and ${\beta}$-D-glucanase for maize stover with an aim to increase its nutrient utilization in sheep. Cellulase and xylanase added individually to ground maize stover at an increasing dose rates (0, 100, 200, 400, 800, 1,600, 3,200, 6,400, 12,800, 25,600, 32,000, 38,400, and 44,800 IU/g DM), increased (p<0.01) the in vitro dry matter digestibility and in vitro sugar release. The doses selected for studying the combination effect of enzymes were 6,400 to 32,000 IU/g of cellulase and 12,800 to 44,800 IU/g of xylanase. At cellulase concentration of 6,400 IU/g, IVDMD % was higher (p<0.01) at higher xylanase doses (25,600 to 44,800 IU/g). While at cellulase doses (12,800 to 32,000 IU/g), IVDMD % was higher at lower xylanase doses (12,800 and 25,600 IU/g) compared to higher xylanase doses (32,000 to 44,800 IU/g). At cellulase concentration of the 6,400 to 32,000 IU/g, the amount of sugar released increased (p<0.01) with increasing levels of xylanase concentrations except for the concentration of 44,800 IU/g. No effect of ${\beta}$-D-glucanase (100 to 300 IU/g) was observed at lower cellulase-xylanase dose (cellulase-xylanase 12,800 to 12,800 IU/g). Based on the IVDMD, the enzyme combination cellulase-xylanase 12,800 to 12,800 IU/g was selected to study its effect on feed intake and rumen fermentation pattern, conducted on 12 rams (6 to 8 months; $20.34{\pm}2.369$ kg body weight) fed 50% maize stover based TMR. The total volatile fatty acids (p<0.01) and ammonia-N concentration was higher in enzyme supplemented group, while no effect was observed on dry matter intake, ruminal pH and total nitrogen concentration.

Keywords

References

  1. AOAC. 1997 Official methods of analysis, 16th Edition. Association of Official Analytical Chemists, Maryland.
  2. Bhat, M. K., and G. P. Hazelwood. 2001. Enzymology and other characteristics of cellulases and xylanases: Enzymes in Farm Animal Nutrition. Bedford M and Partridge G CABI Publishing, Oxon, UK.
  3. Barnett, A. J. G., and R. L. Reid. 1957. Studies on the production of volatile fatty acids from grass by rumen liquor in an artificial rumen and the volatile fatty acid production from grass. J. Agric. Sci. Cam. 48:315-321. https://doi.org/10.1017/S0021859600031671
  4. Colombatto, D., R. L. Mould, M. K. Bhat, D. P. Morgavi, K. A. Beauchemin, and E. Owen. 2003. Influence of fibrolytic enzymes on the hydrolysis and fermentation of pure cellulose and xylan by mixed ruminal microorganisms in vitro. J. Anim. Sci. 81:1040-1050.
  5. Dubois, M., K. A Gilles, J. K Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Biochem. 28:350-356.
  6. Duncan, D. B. 1955 Multiple range and multiple F-tests. Biometrics 11:1-42. https://doi.org/10.2307/3001478
  7. Eun, J. S., and K. A. Beauchemin. 2007. Enhancing in vitro degradation of alfalfa hay and corn silage using feed enzymes. J. Dairy Sci. 90:2839-2851. https://doi.org/10.3168/jds.2006-820
  8. Eun, J. S., K. A. Beauchemin, and H. Schulze. 2007. Use of exogenous fibrolytic enzymes to enhance in vitro fermentation of alfalfa hay and corn silage. J. Dairy Sci. 90:1440-1451. https://doi.org/10.3168/jds.S0022-0302(07)71629-6
  9. Gallardo, I., R. Barcena, J. M. Pinos-Rodriguez, M. Cobos, L. Carreon, and M. Ortega. 2010. Influence of exogenous fibrolytic enzymes on in vitro and in sacco degradation of forages for ruminants. Ital. J. Anim. Sci. 9:34-38.
  10. Giraldo, L. A., M. L. Tejido, M. J. Ranilla, and M. D. Carro. 2008. Effects of exogenous fibrolytic enzymes on in vitro ruminal fermentation of substrates with different forage: concentrate ratios. Anim. Feed Sci. Technol. 141:306-325. https://doi.org/10.1016/j.anifeedsci.2007.06.013
  11. Goering, H. K., and P. J. Van Soest. 1970. Forage Fiber Analysis (Apparatus, Reagents, Procedures and some applications) USDA, Agricultural Handbook No. 379.
  12. Hristov, A. N., T. A. McAllister, and K. J. Cheng. 2000. Intra-ruminal supplementation with increasing levels of exogenous polysaccharides-degrading enzymes: effects on nutrient degradation in cattle fed barley grain diet. J. Anim. Sci. 78: 477-487.
  13. ICAR. 1998. Nutrient requirements of sheep. Indian Council of Agricultural Research, New Delhi, India.
  14. Jalilvand, G., N. E. Odongo, S. Lopez, A. Naserian, R. Valizadeh, F. Eftekhar Shahrodi, E. Kebreab, and J. France. 2008. Effects of different levels of an enzyme mixture on in vitro gas production parameters of contrasting forages. Anim. Feed Sci. Technol. 146:289-301. https://doi.org/10.1016/j.anifeedsci.2008.01.007
  15. McAllister, S. K., H. D. Bae, R. J. Treache, A. N. Hristov, J. Baah, J. A. Shelford, and K. J. Cheng. 2000. Effect of a surfactant and exogenous enzymes on digestibility of feed and on growth performance and carcass traits of lambs. Can. J. Anim. Sci. 80:35-44. https://doi.org/10.4141/A99-053
  16. Morgavi, D. P., K. A. Beauchemin, V. L. Nsereko, L. M. Rode, A. D. Iwaasa, W. Z. Yanq, T. A. McAllister, and Y. Wang. 2000. Synergy between ruminal fibrolytic enzymes and enzymes from Trichoderma longibrachiatum. J. Dairy Sci. 83:1310-1321. https://doi.org/10.3168/jds.S0022-0302(00)74997-6
  17. Nakashima, Y., E. R. Orskov, P. M. Hotten, K. Ambo, and Y. Takase. 1988. Rumen degradation of straw-6. Effect of polysaccharidase enzymes on degradation characteristics of ensiled rice straw. Anim. Prod. 47:421-427. https://doi.org/10.1017/S0003356100003561
  18. Nsereko, V. L. 2000. Effects of fungal enzyme from the rumen, preparations on hydrolysis and subsequent degradation of alfalfa hay fiber by mixed rumen microorganisms in vitro. Anim. Feed Sci. Technol. 88:153-170. https://doi.org/10.1016/S0377-8401(00)00225-X
  19. Pinos Rodriguez, J. M., R. Moreno, S. S. Gonzalez, P. H. Robinson, G. Mendoza, and G. Alvarez. 2008. Effects of exogenous fibrolytic enzymes on ruminal fermentation and digestibilty of total mixed rations fed to lambs. Anim. Feed Sci. Technol. 142:210-219. https://doi.org/10.1016/j.anifeedsci.2007.08.005
  20. Pinos-Rodriguez, J. M., S. S. Gonzalez, G. D. Mendoza, R. Barcena, M. A. Cobos, A. Hernandez, and M. E. Ortega. 2002. Effect of exogenous fibrolytic enzyme on ruminal fermentation and digestibility of alfalfa and rye-grass hay fed to lambs. J. Anim. Sci. 80:3016-3020.
  21. Singh, A. K., P. N. Sudarshan, G. S. Langer, A. S. Sidhu Kochar, and Bhatia.1968. Study of rumen biochemical activity in the buffaloes and Zebu cattle under non urea feeding regimens. Ind. J. Vet. Sci. Anim. Husb. 38:674-681.
  22. Swartz, H. M., and C. A. Schoeman. 1964. Utilization of urea by sheep. I. Rates of breakdown urea and carbohydrates in vivo and in vitro. J. Agric. Sci. 63:289-296. https://doi.org/10.1017/S0021859600015951
  23. Senthilkumar, S., C. Valli, and V. Balakrishnan. 2007. Evolving specific non starch polysaccharide enzyme mix to paddy straw for enhancing its nutritive value. Livest. Res. Rural Dev. 19:1-12.
  24. Waghorn, G. C., and W. C. McNabb. 2003. Consequences of plant phenolic compounds for productivity and health of ruminants. Proc. Nutr. Soc. 62:383-392. https://doi.org/10.1079/PNS2003245
  25. Wang, Y., B. M. Spratling, D. R. Zobell, R. D. Wiedmeier, and T. A. McAllister. 2004. Effect of alkali pretreatment of wheat straw on the efficacy of exogenous fibrolytic enzymes. J. Anim. Sci. 82:198-208.
  26. Yang, W. Z., K. A. Beauchemin, and L. M. Rode. 1999. Effects of an enzyme feed additive on extent of digestion and milk production of lactating dairy cows. J. Dairy Sci. 82:391-403. https://doi.org/10.3168/jds.S0022-0302(99)75245-8
  27. Yu, P., J. J. Mc Kinnon, and D. A. Christensen. 2005. Improving the nutritive value of oat hulls for ruminant animals with pretreatment of a multi-enzyme cocktail: In vitro studies. J. Anim. Sci. 83:1133-1141.

Cited by

  1. Effects of Cellulase Supplementation on Nutrient Digestibility, Energy Utilization and Methane Emission by Boer Crossbred Goats vol.29, pp.2, 2015, https://doi.org/10.5713/ajas.15.0094
  2. Effects of dietary cellulase and xylanase addition on digestion, rumen fermentation and methane emission in growing goats vol.69, pp.4, 2015, https://doi.org/10.1080/1745039X.2015.1039760
  3. Effects of fibrolytic enzymes and isobutyrate on ruminal fermentation, microbial enzyme activity and cellulolytic bacteria in pre- and post-weaning dairy calves vol.59, pp.3, 2019, https://doi.org/10.1071/AN17270
  4. Exogenous Enzymes in Ruminant Nutrition: A Review vol.9, pp.3, 2013, https://doi.org/10.3923/ajas.2015.85.99
  5. Effect of tannins and cellulase on growth performance, nutrients digestibility, blood profiles, intestinal morphology and carcass characteristics in Hu sheep vol.32, pp.10, 2013, https://doi.org/10.5713/ajas.18.0901
  6. Effect of ammonia fiber expansion-treated wheat straw and a recombinant fibrolytic enzyme on rumen microbiota and fermentation parameters, total tract digestibility, and performance of lambs vol.98, pp.5, 2013, https://doi.org/10.1093/jas/skaa116
  7. Effect of Cellulase Enzyme Produced from Penicilliumchrysogenum on the Milk Production, Composition, Amino Acid, and Fatty Acid Profiles of Egyptian Buffaloes Fed a High-Forage Diet vol.11, pp.11, 2013, https://doi.org/10.3390/ani11113066