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ABSTRACT. The optimal portfolio selection problem under inflation risk and subsistence con-
straints is considered. There are index bonds to invest in financial market and it helps to hedge
the inflation risk. By applying the martingale method, the optimal consumption rate and the
optimal portfolios are obtained explicitly. Furthermore, the quantitative effect of inflation risk
and subsistence constraints on the optimal polices are also described.

1. INTRODUCTION

The inflation rate has an crucial impact on the individual’s financial activities. If the inflation
rate is high, the value of individual’s wealth is decreasing and it sometimes gives restrictions
to consume for living. Therefore the economic individual should incorporate the inflation
risk while his financial activities like consumption and investment. The inflation risk is more
sensitive to the long term perspectives so the portfolio choice problems under inflation risk are
concerned with the pension fund managers or retirees. But there exist many difficulties when
we treat the inflation risk. This is because the inflation risk is not hedgeable in real world. While
the market uncertainty is manageable with risky assets in market the price process representing
the inflation rate has no instrument to hedge the risk in financial market. As noticed in Gong and
Remolona [3] and Kothari and Shanken [4], to manage the inflation risk there have been issued
the inflation-indexed bond from the British government in 1981 and now its volume in 2008
is over $1.5 trillion among the international debt market. Thus it is possible for the economic
agent to extend his investment scope into the index bond so he can manage the inflation risk in
complete market.

We address the optimal portfolio problem of the investor who faces the inflation risk and
subsistence constraints. As mentioned above, our individual problem is more likely close to re-
tirees so their living cost is also an important factor to consider. The subsistence constraints im-
plies that the economic agents should always consume with a higher level than predetermined
amount. This is one of the typical habit formation which is the usual patterns of individual’s
consumption behavior. The subsistence constraints and inflation risk will affect the optimal
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consumption and portfolios in a different way. Our object is to figure out their quantitative
effects.

Our problem is the extended version of Merton [7, 8] with the inflation risk and subsistence
constraints. This problem is also studies by Gong and Li [2] and they also give an explana-
tions of the role of the index bond. We differentiate the method to resolve the optimization
problem from their studies. Whereas they use a dynamic programming method and derive the
Hamilton-Jacobi-Bellman equation, we apply the martingale method and also obtain not only
value function but also the optimal controls explicitly. Moreover, we supplements the quanti-
tative results by adding the effect of inflation risk and subsistence constraints on investments
and comparison results with the classical Merton’s solution. These supplementary studies give
more adequate explanations about the role of index bonds when the investor has a subsistence
constraints. We verify that the inflation risk is an important factor to select his optimal polices
and the subsistence constraints makes the investor to reduce his consumption and investment
on stock.

This paper is also related to other literatures about inflation risk and subsistence constraints.
Brennan and Xia [1], Munk et al. [9], and Gong and Li [2] tackle the inflation risk by using
dynamic programming method. Especially Brennan and Xia [1] and Munk et al. [9] consider
the problem under stochastic environment where the interest rate is also stochastic so their
methods need more than one state variables, which makes hard to resolve. The subsistence
constraints also widely studied by Lakner and Nygren [6], Sethi, Taksar, and Presman [11],
Gong and Li [2] and Shin et al. [10]. Most common feature of subsistence constraints is that
the constraints lower the optimal consumption and portfolio level compared to the original
problem and we have the same implications.

This paper is organized as follows. Section 2 explains the financial market setup and Section
3 states the optimization problem with martingale method. The closed-form solutions and
numerical results are given in Section 4 and Section 5. Section 6 concludes.

2. FINANCIAL MARKET

We consider the continuous time financial market in which there are three kinds of assets
to be invested. The financial assets are a risk free bond, an index bond, and a stock and the
investor has to choose his investment ratios for each asset. It is assumed that the risk free bond
has a constant nominal interest rate R and stock price follows the geometric Brownian motion
with constant drift µ and constant volatility σ. The return of an index bond is consist of real
interest rate r and inflation rate which reduces the real financial asset value. The inflation rate
is expressed by the price process and it is also supposed to evolve

dPt

Pt
= µpdt+ σpdW

1
t ,

where µp and σp are constant coefficients and Wt is the standard Brownian motion on a prob-
ability space (Ω,F ,P). Therefore the risk free bond Bt, index bond It, and risky asset St are
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respectively governed by
dBt

Bt
= Rdt,

dI0t
I0t

= rdt+
dPt

Pt
,

dSt

St
= µsdt+ σsdW

2
t ,

where W 2
t is also the standard Brownian motion which is independent of W 1

t .1 Since there
exist two different risk sources and two assets containing each risk, the market is complete. In
our financial setup, the investor can hedge the inflation risk by investing the index bond.

We denote the investor’s consumption rate by ct and it is assumed to be progressively mea-
surable with respect to Ft, positive such that for all t ≥ 0,∫ ∞

0
csds < ∞, a.s.

The portfolios for each assets are also denoted by π0
t , π

1
t and π2

t and they are supposed to be
Ft-measurable, adapted such that for all t ≥ 0,∫ ∞

0
πi
s
2
ds < ∞, almost surely(a.s.), i = 0, 1, 2.

Then investor’s inflation adjusted real wealth process Xt is derived by

dXt = π0
tXt

dBt

Bt
+ π1

tXt
dIt
It

+ π2
tXt

dSt

St
− ctdt−Xt

dPt

Pt

= [R+ π1
t (r −R) + π2

t (µs −R)− µp(π
0
t + π2

t )]Xtdt

− ctdt− (π0
t + π2

t )XtσpdW
1
t + π2

tXtσsdW
2
t , (2.1)

where ct is the real consumption and the initial wealth is a positive constant X0 = x. Let us
define a admissible consumption-portfolio plan pair (c, π) if Xt > 0 for all t ≥ 0.

To make the dynamic wealth process as static constraint, we introduce the equivalent mar-
tingale measure Q generated from the following exponential martingale process

ξt = e−
1
2

∫ t
0 (θ

2
1+θ22)ds−

∫ t
0 θ1dW 1

s −
∫ t
0 θ2dW 2

s ,

where

θ1 = σ−1
p (r + µp −R),

θ2 = σ−1
s (µs −R).

Then the equivalent martingale measure Q is defined by

PQ(A) , E[ξT1A], for A ∈ FT .

1The probability space (Ω,F ,P) is endowed with an augmented filtration {F}∞t=0 generated by the independent
Brownian motions W 1

t and W 2
t . It can be assumed to be correlated between Bt and Wt. However, the correlated

Brownian motions can be restructured into two independent Brownian motions.
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By Girsanov’s theorem, under the measure Q the standard Brownian motions are rewritten
as,

dW̃ 1
t = dW 1

t + θ1dt,

dW̃ 2
t = dW 2

t + θ2dt.

Therefore, under the new measure Q the inflation risk adjusted wealth process becomes

dXt = [rXt − ct]dt− (π0
t + π2

t )XtσpdW̃
1
t + π2

tXtσsdW̃
2
t .

We can verify that under the equivalent martingale measure Q, the risk adjusted wealth
process is the wealth process with real interest rate only. This implies that the inflation risk
is hedgeable in financial market so we can choose a unique optimal portfolios under inflation
risk. If we define the pricing kernel as Ht = e−rtξt, the wealth dynamics (2.1) is represented
by

E
[∫ ∞

0
Htctdt

]
≤ x. (2.2)

This relation is the static wealth constraints for the dynamic wealth process and it plays a
crucial role to apply the martingale method. Moreover the static wealth constraint is the same
as that of an investor who does not face the inflation risk with no investment on an index bond.

We consider an additional constraints on consumption. The investor with no income stream
represents the defined benefit pension fund managers or retirees and for the case of retirees
they face the standard living cost. With the inflation risk, this subsistence constraints affect
their optimal consumption rate and optimal portfolios either. Formally, we suggest that the
investor has a subsistence constraints which restrict the consumption rate such that

ct ≥ L, for all t ≥ 0, (2.3)

where L is the constant least living cost. Now we are ready for stating our objective function.

3. OPTIMIZATION PROBLEM

Our objective is maximizing the expected utility maximization by choosing consumption
and portfolios. In this paper, the investor’s preference is supposed to be defined by CRRA(constant
relative risk aversion) utility function so that his/her satisfaction depends on his/her wealth
level.2 With the constant risk aversion γ, the utility function is expressed by

u(ct) =
1

1− γ
c1−γ
t .

It is easily checked that u(·) is a strictly increasing function and strictly concave. Then the
agent’s expected utility maximization problem with discount factor β is represented as follows.

2It is not hard to extend the problem with general utility which satisfies the regular conditions. Since we want
to show the quantitative results for optimal polices, the concrete preference of the investor is more appropriate.
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Problem 1. An investor who can invest his wealth on an index bond and stock wants to maxi-
mize his expected utility function:

V (x) = max
c,π

E
[∫ ∞

0
e−βtu(ct)dt

]
(3.1)

subject to the wealth constraint (2.2) and the subsistence constraints (2.3).

The agent’s optimal choice variables are consumption rate and investments for index bond
and risky assets. Then the savings are the remaining wealth after investing and consumption.
To resolve this optimization problem we apply the martingale method, which is a main dif-
ference with Gong and Li [2]. They resolve the same optimization problem using dynamic
programming principle which induces the HJB(Hamilton-Jacobi-Bellman) equation with suit-
able boundary conditions.

To apply the martingale method, we introduce the Lagrange multiplier λ so that the dual
value function is defined by

J(λ) = max
c,π

E
[∫ ∞

0
e−βtu(ct)dt

]
− λE

[∫ ∞

0
Htctdt

]
. (3.2)

Since the CRRA utility function is concave and non-decreasing and has derivative func-
tion which is continuous, positive, and strictly decreasing, there exists the continuous inverse
function I : (0,∞) → (x̄,∞) of u′(·). Then the convex dual of a utility function u(·) is the
function

ũ(y) = sup
x∈R

{u(x)− xy}, y ∈ R,

and it is easily check that

ũ(y) = [u(I(y))− yI(y)]1{0<y≤ỹ} + [u(L)− Ly]1{y≥ỹ},

where ỹ = L−γ and I(y) = y
− 1

γ for the CRRA utility function. The boundary ỹ is the
threshold where the investor bounds the subsistence constraints so under that circumstance the
investor’s consumption rate should be constant as his minimum level L. With this covex dual
function ũ(·), the dual value function can be written as

J(λ) = E
[∫ ∞

0
e−βtũ(yt)dt

]
where yt = λeβtHt and has a following differential form

dyt
yt

= (β − r)dt− θ1dW
1
t − θ2dW

2
t . (3.3)

The optimal consumption rate is also determined while constructing the dual value function
and it has the form of

c∗t =

{
I(y), 0 < y ≤ ỹ,
R, y ≥ ỹ.

If we confirm the dual value function, the value function of the original problem is given by
the relation which can be obtained by finding the minimizing multiplier λ.
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Lemma 3.1. When the dual value function is given by the equation in (3.2), the value function
of the primal problem is determined by

V (x) = inf
λ>0

{J(λ) + λx}.

Proof. The value function V (x) is obtained from J(λ) by the Legendre transform inverse
formula. See Section 3.8 of Karatzas and Shreve [5]. �

The optimal wealth process is determined in Lemma 3.1 by the first order conditoin and its
dynamics totally depends on the process in (3.3). Therefore the optimal portfolios are obtained
from comparing the wealth dynamics in (2.1) with the optimal wealth process.

4. THE SOLUTIONS

From the duality and Lemma 3.1, the investor’s value function is obtained from the dual
value function J(λ). Our first step is a derivation of dual value function. Before that let us
denote the two real solutions to the following quadratic equation by α+ > 0, α− < 0.

1

2
(θ21 + θ22)α

2 +

(
β − r − 1

2
(θ21 + θ22)

)
α− β = 0.

Proposition 4.1. The dual value function defined in (3.2) is obtained from

J(λ) =

{
Aλα+ + γ

K(1−γ)λ
− 1−γ

γ , 0 < y ≤ ỹ,

Bλα− − L
r λ+ L1−γ

β(1−γ) , y > ỹ,

where the constants A,B and K are determined by

A =

1
K

(
γα−
1−γ + 1

)
+ α−−1

r − α−
β(1−γ)

α+ − α−
L1−γ+γα+ ,

B =

1
K

(
γα+

1−γ + 1
)
+ α+−1

r − α+

β(1−γ)

α+ − α−
L1−γ+γα− .

K = r +
β − r

γ
− 1− γ

2γ2
(θ21 + θ22). (4.1)

Proof. For the CRRA utility function, the dual value function in (3.2) is characterized by

J(λ) = E
[∫ ∞

0
e−βt

{
γ

1− γ

(
λeβtHt

)− 1−γ
γ

1{0<y≤ỹ} +

(
L1−γ

1− γ
− L

(
λeβtHt

))
1{y≥ỹ}

}
dt

]
.

The second term represents the value function when the investor bounds the subsistence con-
straints so he consumes only L.

With yt in (3.3), if we define the indirect utility function at time t by

ϕ(t, y) = Et

[∫ ∞

t
e−βs

{
γ

1− γ
y
− 1−γ

γ 1{0<y≤ỹ} +

(
L1−γ

1− γ
− Ly

)
1{y≥ỹ}

}
ds

]
,
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then by Feynmman-Kac’s formula, we have the PDE(partial differential equation) for ϕ(t, y) Lϕ(t, y) + e−βt γ
1−γ y

− 1−γ
γ = 0, 0 < y ≤ ỹ

Lϕ(t, y) + e−βt
(
L1−γ

1−γ − Ly
)
= 0, y ≥ ỹ

where the differential operator is defined by

Lϕ(t, y) = ∂ϕ

∂t
+

∂ϕ

∂y
y(β − r) +

1

2

∂2ϕ

∂y2
y2(θ21 + θ22).

If we suggest the separable solution as ϕ(t, y) = e−βtv(y), the PDE is reduced to the
ODE(ordinary differential equation) for v(y):{

1
2y

2v′′(y)(θ21 + θ22) + yv′(y)− βv(y) + γ
1−γ y

− 1−γ
γ = 0, 0 < y ≤ ỹ

1
2y

2v′′(y)(θ21 + θ22) + yv′(y)− βv(y) + L1−γ

1−γ − Ly = 0, y ≥ ỹ
(4.2)

From the variation of parameter, we can get the solution to the ODE by adding the general
solution and particular solution. For the region 0 < y ≤ ỹ, the general solution part for
positive power remains and the opposite part remains for y ≥ ỹ i.e.,

vg(v) =

{
Ayα+ , 0 < y ≤ ỹ
Byα− , y ≥ ỹ

The particular solutions are also easily obtained by guessing

vp(v) =

{
A′y

− 1−γ
γ , 0 < y ≤ ỹ

B′y + C, y ≥ ỹ

If we substitute the function and its derivatives into the ODE (4.2), with the constant K in (4.1)
the coefficient A′, B′ and C are given by A = γ

K(1−γ) , B
′ = −L

r , and C = − L1−γ

β(1−γ) . Thus the
dual value function is a sum of the general and particular solutions(v(y) = vg(y) + vp(y)) and
the coefficients A and B are determined by the smooth-pasting condition at ỹ = L−γ .

Accordingly, the dual value function is derived by

J(λ) = ϕ(0, λ) = v(y).

�

Since the dual value function is obtained explicitly, by Lemma 3.1 the value function defined
in (3.1) is able to be expressed explicitly either.

Theorem 4.1. The value function in (3.1) of the economic agent who faces the inflation risk
and has subsistence constraints is given by

V (x) =

 B

[
L
r
−x

Bα−

] α−
α−−1

+
(
x− L

r

) [ L
r
−x

Bα−

] 1
α−−1

+ L1−γ

β(1−γ) , L/r < x ≤ x̃

A(λ∗)α+ + γ
K(1−γ)(λ

∗)
− 1−γ

γ + λ∗x, x ≥ x̃

,
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where λ∗ and the boundary value x̃ are determined by

Aα+(λ
∗)α+−1 − 1

K
(λ∗)

− 1−γ
γ + x = 0,

x̃ , −Aα+L
−γα++γ +

1

K
L1−γ = −Bα−L

−γα−+γ +
L

r
.

Proof. The value function of the original problem is easily confirmed from Lemma 3.1 and
Proposition 4.1. Since −J ′(λ) is decreasing function, there exists one-to-one correspondence
between y and x. This implies that the interval (0, ỹ] corresponds to [x̃,∞) and (ỹ,∞) corre-
sponds to [L/r, x̃). Here L/r is the minimum wealth level due to the subsistence constraints.

Thus for x ∈ [L/r, x̃), the optimal λ∗ is induced by

λ∗ =

[
L
r − x

Bα−

] 1
α−−1

,

and the value function is obtained from substituting optimal λ∗ in Lemma 3.1. On the contrary
for x ∈ [x̃,∞) the λ∗ is the solution to the algebraic equation derived also in Lemma 3.1.
Finally the boundary x̃ is determined at ỹ. �

In contrast with the optimal consumption rate, it is hard to find the optimal portfolios directly.
This is the big drawback of martingale method compared to dynamic programming principle.
The optimal wealth process, however, contains the optimal portfolios and its differential form
gives the optimal portfolios explicitly. The closed-form solutions for optimal policies are given
in the next theorem.

Theorem 4.2. The investor who wants to maximize his expected utility in (3.1) has the optimal
wealth process as

X∗
t =

{
−Bα−

(
yλ

∗
t

)α−−1
+ L

r , L/r < x ≤ x̄,

−Aα+

(
yλ

∗
t

)α+−1
+ 1

K

(
yλ

∗
t

)− 1
γ , x > x̄.

(4.3)

Furthermore, the investor’s optimal consumption rate and portfolios are also given by

c∗t =

{
R, L/r < x ≤ x̄,(

yλ
∗

t

)− 1
γ , x > x̄,

,

π0
t
∗
=

 −
(

θ1
σp

+ θ2
σs

)
(α− − 1)

(
L
r − x

)
, L/r < x ≤ x̄,

−
(

θ1
σp

+ θ2
σs

) [
Aα+(α+ − 1)

(
yλ

∗
t

)α+−1
+ 1

γK

(
yλ

∗
t

)− 1
γ

]
, x > x̄,

π1
t
∗
=


θ1
σp
(α− − 1)

(
L
r − x

)
+ x, L/r < x ≤ x̄,

θ1
σp

[
Aα+(α+ − 1)

(
yλ

∗
t

)α+−1
+ 1

γK

(
yλ

∗
t

)− 1
γ

]
+ x, x > x̄,
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π2
t
∗
=

{ θ2
σs
(α− − 1)

(
L
r − x

)
, L/r < x ≤ x̄,

θ2
σs

[
Aα+(α+ − 1)

(
yλ

∗
t

)α+−1
+ 1

γK

(
yλ

∗
t

)− 1
γ

]
, x > x̄,

.

Proof. From the first order condition in Lemma 3.1, the optimal wealth process is induced as a
function of λ∗. Therefore with the dynamics of yλ

∗
t in (3.3), we can obtain the optimal wealth

process X∗
t .

For x ≥ x̃, the optimal wealth dynamics is governed by

dX∗
t =

[
−Aα+(α+ − 1)

(
yλ

∗
t

)α+−1
− 1

γK

(
yλ

∗
t

)− 1
γ

]
{(β − r)dt− θ1dW

1
t − θ2dW

2
t }

+
1

2

[
−Aα+(α+ − 1)(α+ − 2)

(
yλ

∗
t

)α+−1
+

1 + γ

γ2K

(
yλ

∗
t

)− 1+γ
γ

]
(θ21 + θ22)dt

= [r + π2
t
∗
(µs −R) + π1

t
∗
(r −R)− (π0

t
∗
+ π2

t
∗
)µp]X

∗
t dt− c∗tdt

+ π2
t
∗
X∗

t σsdBt − (π0
t
∗
+ π2

t
∗
)X∗

t σpdWt

where the optimal policies are defined by

c∗t =
(
yλ

∗
t

)− 1
γ
,

−(π0
t
∗
+ π2

t
∗
)X∗

t =
θ2
σp

[
−Aα+(α+ − 1)

(
yλ

∗
t

)α+−1
− 1

γK

(
yλ

∗
t

)− 1
γ

]
,

π2
t
∗
X∗

t =
θ1
σs

[
−Aα+(α+ − 1)

(
yλ

∗
t

)α+−1
− 1

γK

(
yλ

∗
t

)− 1
γ

]
.

Similarly, for L/r < x ≤ x̃, we have

dX∗
t =

[
−Bα−(α− − 1)

(
yλ

∗
t

)α−−1
]
{(β − r)dt− θ1dW

1
t − θ2dW

2
t }

+
1

2

[
−Bα−(α− − 1)(α− − 2)

(
yλ

∗
t

)α−−1
]
(θ21 + θ22)dt

= [r + π2
t
∗
(µs −R) + π1

t
∗
(r −R)− (π0

t
∗
+ π2

t
∗
)µp]X

∗
t dt− c∗tdt

+ π2
t
∗
X∗

t σsdBt − (π0
t
∗
+ π2

t
∗
)X∗

t σpdWt

where the optimal policies are defined by

c∗t = R,

−(π0
t
∗
+ π2

t
∗
)X∗

t =
θ2
σp

[
−Bα−(α− − 1)

(
yλ

∗
t

)α−−1
]
,

π2
t
∗
X∗

t =
θ1
σs

[
−Bα−(α− − 1)

(
yλ

∗
t

)α−−1
]
.

By substituting the optimal wealth in (4.3) into each optimal policies, we get the results. �
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We have the intuitive results for the optimal portfolios. In reality, the nominal interest rate is
higher than the sum of real interest rate and inflation rate so the generator θ1 of the equivalent
martingale measure Q has a negative value in usual. So the saving amount is composed of
two components which are borrowing for stock investment and index bond related amount. We
have more graphical results in the next section.

5. NUMERICAL RESULTS

In this section, we verify the quantitative effect on optimal policies. The inflation risk and
subsistence constraints have impact on the optimal policies in different ways. To analyze the
subsistence constraints in optimal consumption and portfolio, the results for the classical Mer-
ton’s problem are revisited. For more concrete example, the parameters in our model are
adopted from Gong and Li [2] and this would give the comparison results with theirs. Let
us set the parameters as follows.

γ = 2, β = 0.07, L = 0.5, R = 0.07, r = 0.04,

µ = 0.09, σ = 0.2, µp = 0.035, σp = 0.05.

The inflation rate parameter µp could have various values but we define inflation rate as a high
level to show its impact more concretely.

Fig. 1 shows the optimal consumption rate. The thin line is the results for Merton’s problem
and thick line is our optimal consumption rate. Near the minimum wealth level, the investors’s
consumption rate is constant and it approach to the Merton’s solution as wealth increases. This
is the similar results in Shin et al. [10] in which the subsistence constraints are considered only.
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FIGURE 1. This figure is the optimal consumption rate when the investor faces
the inflation risk and subsistence constraints with the parameters γ = 2, β =
0.07, L = 0.5, R = 0.07, r = 0.03, µs = 0.09, σs = 0.2, µp = 0.035, σp =
0.05. The thick line is our optimal consumption rate and the thin line is the
results of the classical Merton’s problem
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FIGURE 2. This figure is a comparison result of the optimal consumption
rate with different inflation rate. The parameters are given by γ = 2, β =
0.07, L = 0.5, R = 0.07, r = 0.03, µs = 0.09, σs = 0.2, µp = 0.035, σp =
0.05. The dotted line and dashed line are the optimal consumptions of the
model with µp = 0.03 and µp = 0.025 respectively, and the other line is our
benchmark model with µp = 0.035.

The effect of inflation risk is described in Fig. 2. As the inflation rate increases, the optimal
consumption rate decreases as we expected. The plain line is the our benchmark model with
inflation rate µp = 0.35 and the dashed line is the line with µp = 0.25. We can confirm that
the inflation risk is very important determinant to consume.

We have interesting results for the portfolio ratios. In Fig. 3 the overall results are similar
with that of Gong and Li [2] but in Fig. 4, we have additional results for the high inflation rate
case. The thick line represents the stock investment and dashed line is the investment on index
bond and the dotted line is the savings after stock and index bond investment. Moreover the thin
line represents the Merton’s optimal portfolio. In Fig. 3, the investor invests his considerable
portion of wealth to index bond near the minimum wealth level but the amount shrinks as his
wealth increases. This is because the role of index bond is the reducing volatility of wealth so
near the minimum wealth level he reduce stock investment and hedge inflation risk by using
index bond. If he has enough wealth not to care about the inflation risk, he acts as if there are no
inflation risk and index bond in financial market. In the other words, his financial market setup
is similar to that of Merton’s problem. Therefore, it is also confirmed that the stock investment
approach to the Merton’s solution as wealth increases.

Fig. 4 shows additional portfolios when the inflation risk is high so that the index bond
premium defined by (r + µp − R) is positive. The main difference with Fig. 3 is the sign of
index bond premium. This is the very intuitive results, however. Since there is no limits to
borrowing, the investor borrow from bank as much as possible and invest index bond and stock
because the return of index bond and stock is always higher than savings.
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FIGURE 3. This figure is the optimal portfolios when the investor faces the
inflation risk and subsistence constraints with the parameters γ = 2, β =
0.07, L = 0.5, R = 0.07, r = 0.03, µs = 0.09, σs = 0.2, µp = 0.035, σp =
0.05. The thick line is the optimal stock investment and dashed line is the
index bond investments. The dotted line represents the savings after investing
stock and index bond. The thin line is the optimal portfolio of the classical
Merton’s problem
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FIGURE 4. This figure is the optimal portfolios when the investor faces the
inflation risk and subsistence constraints with the parameters γ = 2, β =
0.07, L = 0.5, R = 0.07, r = 0.03, µs = 0.09, σs = 0.2, µp = 0.045, σp =
0.05. The thick line is the optimal stock investment and dashed line is the
index bond investments. The dotted line represents the savings after investing
stock and index bond. The thin line is the optimal portfolio of the classical
Merton’s problem
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We have comparison results for the optimal portfolios in Fig. 5. The left figure is the
optimal stock investments and the right figure is the index bond holdings. In a similar manner
of optimal consumption comparison, the plain line is our benchmark case and the dashed line
is the smallest inflation rate case. In our model, the lower inflation rate the higher return on
savings so the investor use ’short-selling’ strategy when the inflation rate is low enough. The
relatively high return on savings also reduces the stock investments.
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FIGURE 5. These figures are comparison results of the optimal stock invest-
ments and index bond investments with different inflation rate. The parameters
are given by γ = 2, β = 0.07, L = 0.5, R = 0.07, r = 0.04, µ = 0.09, σ =
0.2, µp = 0.035, σp = 0.05. The dotted line and dashed line are the optimal
consumptions of the model with µp = 0.03 and µp = 0.025 respectively, and
the other line is our benchmark model with µp = 0.035.

6. CONCLUSION

In this paper we investigate the optimal portfolio selection problem of the investor who faces
the inflation risk and subsistence constraints. Our paper offers a different method to resolve the
problem from Gong and Li [2]. Since the inflation risk is the new source of uncertainty in
the financial market, the standard dynamic programming principle approach has a difficulty in
treat the new uncertainty. As Gong and Li [2], our financial market has an index bond to hedge
inflation risk so we can find the unique equivalent martingale measure to apply the martingale
method. Nevertheless, our approach has other advantages compared to DPP approach such
as deriving optimal consumption and no need of verification theorem for optimal policies.
Furthermore other extension models like voluntary retirement are also applicable easily.

We also supplement the numerical results when the investor faces the inflation risk and
subsistence constraints. At enough wealth level, the investor acts as if his economy is same as
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that of Merton’s problem. Moreover, it is verified that the inflation risk is important determinant
when he selects his consumption and portfolio near the minimum wealth level. Our results
could be extended to the case of correlated risks with little difficulty but the main characteristics
would have similar results for our model.
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