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ABSTRACT

Ovarian cancer is the most lethal world-wide gynecological disease among women due to the lack of molecular 
biomarkers to diagnose the disease at an early stage. In addition, there are few well established relevant animal mo-
dels for research on human ovarian cancer. For instance, rodent models have been established through highly specia-
lized genetic manipulations, but they are not an excellent model for human ovarian cancer because histological featu-
res are not comparable to those of women, mice have a low incidence of tumorigenesis, and they experience a pro-
tracted period of tumor development. However, the laying hen is a unique and highly relevant animal model for re-
search on human ovarian cancer because they spontaneously develop epithelial cell-derived ovarian cancer (EOC) as 
occurs in women. Our research group has identified common histological and physiological aspects of ovarian tumors 
from women and laying hens, and we have provided evidence for several potential biomarkers to detect, monitor and 
target for treatment of human ovarian cancers based on the use of both genetic and epigenetic factors. Therefore, this 
review focuses on ovarian cancer of laying hens and relevant regulatory mechanisms, based on genetic and epigenetic 
aspects of the disease in order to provide new information and to highlight the advantages of the laying hen model 
for research in ovarian carcinogenesis. 
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INTRODUCTION       

Ovarian cancer is a fatal gynecological disease and 
the fifth leading cause of cancer-related deaths in wo-
men (Siegel et al., 2011). It is difficult to control with 
chemotherapeutic and surgical strategies, and ovarian can-
cer poses significant challenges in making an early 
stage diagnosis of the disease. It is typically detected at 
later stages of metastasis as cells are transported to oth-
er organs through blood vesicles or lymphatics to colo-
nize those tissues which are linked directly to high 
rates of mortality. Indeed, about 70 percent of ovarian 
cancer patients are diagnosed at advanced stages, while 
only 30% of them survives longer than five years fol-
lowing diagnosis (Bovicelli et al., 2011). However, de-
tection of ovarian cancer at early stages increases sur-
vival rates to over 70%. In order to allay its fatal ef-
fects, novel biomarkers for early stage detection must 
be identified in appropriate animal models for research 
on human ovarian cancer. In addition, further genetic 

and epigenetic insights are needed for a better under-
standing of regulatory mechanisms responsible for ova-
rian tumorigenesis.

The laying hen is perhaps the most appropriate ani-
mal model for studying human ovarian cancer when 
compared to other animal models such as primates and 
rodents. Primates share similar physiological and ana-
tomical characteristics with humans, but biological and 
ethical limitations, as well as higher costs and non- 
spontaneous development of ovarian cancer are serious 
obstacles (Vanderhyden et al., 2003). Laboratory rodents 
have the advantages of easy handling, high efficiency 
of genetic changes, and low cost, but they are im-
practical for research on epithelial cell-derived ovarian 
cancer (EOC) due to a wide variety of histological ty-
pes, a low incidence of ovarian cancer and the pro-
tracted periods required for the appearance of ovarian 
tumors (Stakleff and Von Gruenigen, 2003). On the oth-
er hand, the laying hen is an appropriate experimental 
animal model for human ovarian cancer because ap-
proximately 83% develop EOC after 3 to 4 years of 
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continuous laying of eggs (Barua et al., 2009). More-
over, several well-developed molecular biomarkers used 
to detect ovarian cancer in women are also expressed 
in ovarian tumors in laying hens.    

In order to increase understanding of ovarian carci-
nogenesis, many researchers are investigating and eluci-
dating multiple genetic and epigenetic mechanisms us-
ing a variety of molecular and cellular biological tech-
niques. Indeed, various genetic alterations are involved 
in ovarian carcinogenesis. For example, during menst-
ruation and ovulation, the disruption and repair of the 
epithelial surface of ovaries leads to genomic damage, 
DNA mutations, and insertion and deletion of the sur-
face ovarian epithelium, increasing the risk of EOC (Fa-
thalla, 1971). In addition, genetic alterations, abnormal 
cell cycles and their alteration of regulatory genes such 
as cyclins, cyclin-dependent kinases and cyclin-depen- 
dent kinase inhibitors are common features of various 
types of cancer. Furthermore, different methylation pat-
terns in normal and cancerous ovaries may provide clu-
es to allow discovery and elucidation of epigenetic me-
chanisms responsible for ovarian cancer. Indeed, DNA 
methylation has critical roles in embryogenesis, orga- 
nogenesis and carcinogenesis including ovarian cancer 
and it is regulated by several types of DNA methyl-  
transferases. Recently, many researchers have attempted 
to determine the relationship between epigenetics and 
microRNAs and determine whether they directly or in-
directly regulate epigenetic mechanisms such as methy-
lation and post-transcriptional gene regulation in ova- 
rian cancers. Therefore, this review addresses general 
and histological characteristics of ovarian cancer, and 
the application of results from the laying hen for ovar-
ian cancer research into genetic/epigenetic regulatory 
mechanisms during ovarian carcinogenesis. 

Characteristics and Classification of Ovarian Cancer

General Characteristics

Ovarian cancer is the fifth deadliest cancer in female 
patients in the United States. Approximately 1 in 70 
women have a lifetime risk of ovarian cancer, and 1 in 
100 women die from it (Siegel et al., 2011). The most 
probable cause of the high risk and high death rate is 
late diagnosis when the cancer is usually in its ad-
vanced stages of acute metastasis status to other organs 
has occurred. In fact, approximately 70% of ovarian 
cancer patients are diagnosed at the advanced stages, 
of which only 30% are expected to survive past five 
years (Bovicelli et al., 2011). More than 50% of ovarian 
cancers appear after the age of 40, as the incidence ri- 
ses sharply during peri-menopausal and post-menopau-
sal periods in women; the peak incidence of EOC oc-

curs at age 60. However, mortality rates from ovarian 
cancer decrease sharply after 65 years of age (Jemal et 
al., 2008; Parazzini et al., 1991).

In general, it is well known that approximately 3% 
of ovarian cancers, such as choriocarcinomas, originate 
from germ cells, about 7% of ovarian tumors arise fr-
om sertoli or granulosa cells which come from sex ch-
ord stromal cells, whereas 90% of ovarian cancers are 
germinal/surface epithelia-derived or originate from  epi-
thelium of the oviduct (Auersperg et al., 2001; Kurman 
and Shih Ie, 2008; Kurman et al., 2008). EOCs are di- 
vided histologically into several sub-types such as en-
dometrioid, serous, clear cell, mucinous, and undifferen-
tiated carcinomas (Auersperg, 2011; Auersperg et al., 
2001). Indeed, this high rate of EOC likely results from 
incessant ovulation and menstrual cycles that lead to 
genomic damage and mutations in genes in the ovarian 
surface epithelium (Auersperg et al., 1998; Murdoch et 
al., 2005). To investigate and elucidate the etiological 
and pathological aspects of EOC, several rodent models 
have been developed through biotechnological manipu-
lation, but they have many limitations and obstacle as-
sociated with clinical relevance because of the non- 
spontaneous nature and physiologically distinct differ-
ences in their EOC (Barua et al., 2009; Stakleff and Von 
Gruenigen, 2003; Vanderhyden et al., 2003). Meanwhile, 
the laying hen spontaneously develops EOC at a high 
rate as occurs in women and shows very similar mor-
phological characteristics to that of EOC in women (Ahn 
et al., 2010; Ansenberger et al., 2009; Barua et al., 2009; 
Lim et al., 2011; Stammer et al., 2008). Therefore, the 
laying hen EOC is most likely to provide positive out-
comes in efforts to develop anti-cancer drugs and bio-
markers for early diagnosis and therapies to prevent 
adverse outcomes of EOC in women.

It is believed that the aberrant gene regulation, ex-
pression, and mutational damage in the ovarian surface 
epithelium by repeated ovulation events during men-
strual cycles increase the incidence of EOC in women. 
In addition, DNA damage caused by reactive oxygen 
species influences various regulatory mechanisms to con-
trol hormone synthesis and secrection for a variety of 
physiological and developmental events in the female 
reproductive tract. To prevent such genomic damage, 
most animals maintain several self-protective mechani-
sms including the production of anti-oxidant enzymes 
or molecular regulatory systems, but these provide less 
than complete protection (Cooke et al., 2003; Marnett, 
2000; Murdoch et al., 2005). In addition, numerous ge-
netic and epigenetic alterations such as microRNA mu-
tation, activation and inactivation as well as alterations 
in DNA methylation or histone acetylation patterns oc-
cur during ovarian carcinogenesis. 
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Classification of EOC

There are five histological subtypes of EOC, of whi-
ch the serous type comprises approximately 60%, the 
endometrioid type 10～20%, the clear cell type less than 
10%, the mucinous type less than 5%, and undiffe-
rentiated carcinomas less than 1% (Bocker, 2002). Of 
these, serous carcinoma is the most common and lethal 
subtype of ovarian cancer. This cancer type is charac-
terized by high levels of abnormal alterations in DNA 
copy number and low levels of point mutations in ge-
nes. It exhibits papillary structures with histological fea-
tures including nuclear atypia and abnormal slit glan-
dular locations (Barua et al., 2009). Endometrioid ovari-
an cancer is the second most common subtype of ova-
rian cancer. It is influenced by hormones such as estro-
gen and progesterone and shows distinct differentiation 
with nuclear pleiomorphism as well as characteristics 
including less invasion into the myometrium and a low 
potential for lymph node metastasis. In the histological 
features of the endometrioid type, complex glandular, 
microglandular foci and solid growth patterns exist (Ba-
rua et al., 2009; Sherman, 2000). 

Genetic and Epigenetic Mechanisms of Ovarian Carci-

nogenesis

Genetic Mechanisms

It is well established that development and progre-
ssion of cancers are results from accumulation of ge-
nomic changes like gene amplification, chromosomal tr-
anslocation, point mutations, promoter insertion and de-
letions (Holschneider and Berek, 2000. These may con-
tribute to many genetic abnormalities which are asso-
ciated with ovarian cancer such as oncogenic activation 
or inactivation, cell signaling transition, epithelial me- 
senchymal transition, abnormalities of the cell cycle re-
gulatory system and loss of function in tumor suppre-
ssor genes. Furthermore, these may involve alterations 
in gene expression that are major features of ovarian 
carcinogenesis and their identification is useful for cli- 
nical trials of ovarian cancer. Hence, in our previous 
studies, we mainly focused on several dynamic points 
of genomic regulation and function, because these mo-
dalities occur through multiple simultaneous interac-
tions. In general terms, alterations in tumor suppressor 
genes and expression of oncogenes leads to carcinoge-
nesis. For instance, BRCA1, BRCA2, and P53 mutations 
are common features of high-grade serous ovarian can-
cers. K-Ras over-expression (Enomoto et al., 1991), alter-
ations in ERBB2 expression (Lancaster et al., 2006), as 
well as mutations in c-Myc, AKT, PTEN and CTNNB1 
have been discovered as critical regulators of ovarian 
carcinogenesis (Xing and Orsulic, 2005). Furthermore, 

over-activation and abnormal over-expression via gene 
amplification (i.e. RAB25, FGF1, PI3R1 and AURKA), 
and genomic mutations (i.e. CDKN2A, K-Ras, SMAD4 
and KIT), deletions, mutations, and loss of heterozy-
gosity (PTNE, BRCA1, BRCA2, TP53 and ARH1) have 
also been discovered to play a role in ovarian tumor 
development (Bast et al., 2009).

Meanwhile, various aberrations in activation of sig-
naling pathways (such as LPA, NF-KB, PI3K, JAK/ 
STAT, and MAPK pathways) related to regulatory me-
chanisms in cell metabolism, proliferation, differentia-
tion and apoptosis in ovarian cancerous tissues have 
been discovered and elucidated. For example, the LPA 
(lipoprotein) signaling pathway is activated in 90% of 
ovarian cancers, and it has functions that affect ini-
tiation, progression and metastasis of cancers (Bast et 
al., 2009; Song et al., 2009). In general, concomitant 
with activation of this signaling pathway, there is  acti-
vation of cyclin D1 and matrix metalloproteinases, and 
cyclooxygenase which is well known to accompany de-
velopment of ovarian carcinogenesis (Bast et al., 2009). 
The NF-KB signal transduction cascade is activated in 
one-half of ovarian cancers and it is mainly initiated 
by epidermal growth factor and pro-inflammatory cyto-
kines such as interleukin 6 and tumor necrosis factors, 
and it can also be driven by MAPK and PI3K signal-
ing pathways. It mainly prevents apoptosis in various 
tissues, but it also stimulates cell proliferation, angio-
genesis, and inflammation in ovarian cancerous cells/ 
tissues (Annunziata et al., 2008; Bast et al., 2009; Her-
nandez et al., 2010). In the MAPK signaling cascade, 
MAPK is initially activated by epidermal growth factor 
and it generally brings about several oncogenic muta-
tions in ERBB2, BRAF, and KRAS that lead to uncon-
trolled cell proliferation in cancer (Bast et al., 2009; Cho 
and Shih Ie, 2009). Furthermore, the PI3K pathway is 
constitutively activated in most of ovarian cancers th-
rough several growth factors such as epidermal growth 
factor, bone morphogenetic proteins, and tumor ne-
crosis factors. It is also stimulated by inactivating PT-
EN mutations or activating PIK3CA mutations (Bast et 
al., 2009; Kuo et al., 2009; Yang et al., 2006). As well as, 
it accelerates cell proliferation by inactivating cell cycle 
inhibitory genes such as P21 and P27 (also known as 
CDKN1A and CDKN1B, respectively) (Bast et al., 2009). 
As a matter of fact, these examples of abnormal regu-
lation and expression of cell cycle related gene are 
among the most common genetic characteristics asso-
ciated with initiation and development of cancer. The 
cell cycle in most eukaryotic cells includes a series of 
highly coordinated events consisting of cell growth, re-
plication of genetic materials, segregation of the dupli-
cated chromosomes and cell division (Vermeulen et al., 
2003). Specifically, the cell division cycle in mammals 
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is precisely and harmoniously regulated in a timely 
manner by different active heterodimeric complexes that 
include cyclin dependent kinases (CDKs) and their cog-
nate cyclin partners, as well as CDK inhibitors (CDKIs) 
(D'Andrilli et al., 2004). Thus, tumor development fre-
quently occurs when there is deregulation of the cell 
cycle control system including abnormal regulation of 
expression of cell cycle genes (Bovicelli et al., 2011). In 
human cancerous tissues including EOC, different fami-
lies of cell cycle genes and regulators are frequently 
mutated and dysfunctional (D'Andrilli et al., 2004). 

The epithelial-mesenchymal transition (EMT) is a ne-
cessary process for morphological organogenesis and 
embryogenesis (Thiery and Sleeman, 2006) and it also 
correlates with ovarian carcinogenesis (Liliac et al., 201). 
During ovarian tumor invasion and metastasis, EMT is 
commonly detected and it is involved in various events 
such as cellular reprogramming, loss of epithelial char-
acteristics and production of the extracellular matrix 
(Kalluri and Weinberg, 2009). 

Epigenetic Mechanisms

Until recently, it is believed that tumorigenesis is 
caused by the accumulation of genetic changes such as 
gene mutation, rearrangement, deletion and trans-
locations at the genomic level. However, these classical 
theories alone were unable to clarify the basis for carci-
nogenesis because, in contrast to genetic regulation, epi-
genetic modifications alter gene expression without ch-
anges in DNA sequences. Thus, it is now fully under-
stood that epigenetic events involving multiple inter-
actions with DNA methylation, histone modification, 
and small non-cording RNAs lead directly to ovarian 
cancer. Indeed, beside genetic changes, alterations in 
chromatin conformation have been shown to contribute 
to carcinogenesis (Hatziapostolou and Iliopoulos, 2011). 
In addition, many research groups have demonstrated 
that epigenetic mechanisms are closely associated with 
the development and progression of ovarian cancer, 
and gradual stimulation is involved in advanced stages 
of tumorigenesis (Balch et al., 2009). Recently, the field 
of epigenetics has become highly relevant for clinical 
trials in cancer research and as a result, histone deace-
tylase and DNA methylation inhibitors have undergone 
rapid development in the anti-cancer drug industry. 

DNA methylation is one of the major epigenetic mo-
difications that have critical roles in embryogenesis, or-
ganogenesis and carcinogenesis, including ovarian can-
cer. It is mainly regulated by several types of DNA 
methyltransferases (DNMTs). Theoretically, DNA methy-
lation is added to the carbon-5 cytosine ring of CpG is-
lands by DNMTs which have three established forms: 
DNMT1, DNMT3A and DNMT3B. DNMT1 mainly pl-

ays an enzymatic role in the maintenance of DNA me-
thylation, and is a hallmark of endometrioid carcino-
mas and prostate cancer (Lan et al., 2010). It is also re-
sponsible for both de novo maintenance of methylation 
of tumor suppressor genes in various human cancer 
cells (Jair et al., 2006). On the other hand, DNMT3A and 
DNMT3B function in de novo methylation and over-ex-
pression of either DNMT3A or DNMT3B which is asso-
ciated with tumorigenesis depending on cancer types 
in humans (Robertson et al., 1999; Socha et al., 2009). 
Recent research has elucidated the relationship between 
epigenetics and microRNAs, and determined whether 
they directly or indirectly regulate mechanisms such as 
methylation and post-transcriptional gene regulation in 
ovarian cancer. Indeed, we previously reported alter-
native DNA methylation patterns of several genes in 
EOC of laying hens that are influenced directly by ch-
anges in expression of genes associated with initiation 
and progression of cancer (Jeong et al., 2012; Lee et al., 
2012; Lim et al., 2012). In the same vein, most cancer 
related genes, especially tumor suppressor genes, are 
commonly regulated by DNA methylation events. Acc-
ording to previous reports, several cancer associated ge-
nes have hypermethylation patterns and oncogenes dis-
play hypomethylation patterns during cancer develop-
ment. It has becoming evident that hypermethylation 
can lead to gene transcriptional silencing while hypo-
methylation may increase gene transcription in tumori-
genesis including ovarian cancer. 

MicroRNAs (miRNA) are small non-coding segments 
of RNA that regulate post-transcriptional processing by 
binding to the 3’UTR region of a target gene to trigger 
down-regulation. MiRNAs have been shown to play 
crucial roles in a wide range of biological and patho-
logical processes. Previously, we reported the associa-
tion between chicken ovarian cancer-related genes and 
several miRNAs (see Table 1 and Fig. 1). In addition, 
results of many recent studies revealed that miRNAs 
are down-regulated in various cancer types containing 
human ovarian cancer (Dahiya et al., 2008; Laios et al., 
2008; Nam et al., 2008; Zhang et al., 2008). In addition, 
the term epi-miRNA refers to a complex connection be-
tween an epigenetic mechanism and a miRNA mole-
cule. This complex is affected by miRNA expression, 
which generates an epigenetic feedback mechanism (Va-
leri et al., 2009). Moreover, epigenetic regulation has 
been shown to mediate several miRNA-related instan-
ces of cancer development and disease.

Models for Human Ovarian Cancer Research

Primate Models

Resembling humans in pathologies, anatomy and phy-
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Table 1. MicroRNA profiling for chicken ovarian carcinoma related 

genes

microRNA Target transcript References

gga-miR-101
gga-miR-1668
gga-miR-1681

SERPINB3 Lim et al (2012)

gga-miR-1615 AvBD-11 Lim et al (2013)

gga-miR-499
 gga-miR-1709

PTN Lee et al (2012)

gga-miR-140 SPP1 Lim et al (2012)

gga-miR-1798 CCND1 Lee et al (2012)

gga-miR-1699 CCNE2 Lee et al (2012)

gga-miR-223 CDK1 Lee et al (2012)

gga-miR-1744 CDK3 Lee et al (2012)

gga-miR-1626 CDKN1A Lee et al (2012)

gga-miR-222
gga-miR-1787
gga-miR-1812

CDKN1B Lee et al (2012)

siological characteristics including menstrual cycles, pri-
mate models are crucial for ovarian cancer research. 
For instance, chemoprevention studies for ovarian can-
cer have been conducted on monkeys (cynomolgus maca-
ques). In those studies, researchers combined and ad-
ministrated sex steroid hormones (estrogen and proges-
terone) and oral contraceptives, and found that the sex 
steroids increased apoptosis levels of ovarian surface 
epithelium (Rodriguez et al., 1998). Similarly, ovarian 
cancer researches using rhesus monkeys suggested that 
primate models have a unique potential for compara- 
tive research on human ovarian cancer (Brewer et al., 
2007). However, primate models do have severe biolo-
gical limitations, including non-spontaneous ovarian can-
cer development, a deficiency of surrogate biomarkers, 
and practical challenges due to requirements for scien-
tists and technicians with specialized skills, and high 
cost of obtaining and maintaining primates (Lu et al., 
2009).

Rodent Models

Genetically modified mouse models for ovarian can-
cer research are available and, due to a high level of 
inbreeding, provide for reproducibility in results when 
used to investigate functional interactions and specific 
signaling pathways associated with cancer-related genes 
during in vivo tumor development. Historically, rodent 
models for ovarian cancer research were first devel-
oped by Orsulic and colleagues who systematically re-
searched several introduced oncogenes in mouse ovari-

List of abbreviation

AKT Serine/Threonine protein kinase Akt

BRCA1/2 Breast cancer1/2

CDK1 Cyclin-dependent kinase 1

CDK3 Cyclin-dependent kinase 3

CDK4/6 Cyclin-dependent kinase 4/6

CDK5 Cyclin-dependent kinase 5

CDKN1A Cyclin-dependent kinase inhibitor 1A (p21, Cip1)

CDKN1B Cyclin-dependent kinase inhibitor 1B (p27, Kip1)

DNMT1 DNA (cytosine-5-)-methyltransferase 1

DNMT3A DNA (cytosine-5-)-methyltransferase 3 alpha

DNMT3B DNA (cytosine-5-)-methyltransferase 3 beta

EGFR Epidermal growth factor receptor

EMT Epithelial–mesenchymal transition

ERBB2 Erythroblastic leukemia viral oncogene homolog2

miRNA MicroRNA

PI3K Phosphoinositide 3 kinase

PTEN Phosphatase and tensin homolog

PTN Pleiotrophin

TP53 Tumor protein p53

Fig. 1. Schematic diagram of cell cycle regulatory genes and micro-

RNAs on the each phase of cell cycle. Diagram of mechanism of 

cell cycle regulatory genes as activator or inhibitor functions on the 

cell cycle like cyclin D, cyclin E, cyclin A, CDK4/6, CDK2 and CD-

K1. MicroRNA targeted cell cycle regulatory genes as down-regu-

lation of each target genes which are miR-1798, miR-1626, miR- 1812, 

miR-222, miR-1787, miR-1699 and miR-1744.

an cells using an avian retroviral gene delivery system 
(Orsulic et al., 2002). Later, Flesken-Nikitin generated 
an EOC mouse model by inactivating Trp53 and Rb in 
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ovarian surface epithelium (Flesken-Nikitin et al., 2003). 
Certainly, ovarian tumors occasionally develop sponta-
neously with aging in some abnormal mice, in Spra-
gue-Dawley rats and Wistar rats (Gregson et al., 1984; 
Tillmann et al., 2000; Walsh and Poteracki, 1994). How-
ever, these models are not feasible for ovarian cancer 
research due to a wide variety of histological types, low 
incidence, and long durations needed for disease de-
velopment.

Avian Models

Fredrickson first developed the laying hen as a mo-
del for ovarian cancer in 1987 (Fredrickson, 1987). In 
fact, avian species, as experimental animal models have 
many advantageous characteristics for EOC research as 
compared with other animal models. Approximately 
83% of avian species have genital tumors including ova-
rian cancer, which is of considerable value to resear-
chers as compared to other species. About 45% of 
laying hens develop reproductive tract tumors at two 
years of age. Actually, ovarian cancers spontaneously 
develop age-dependently in laying hens, with 12% at 
age 3.9 years, 32% at age 4.2 years and more than 50% 
at age 6.1 years (Fredrickson, 1987). Laying hens start 
laying eggs at 20 to 22 weeks of ages and reach their 
peak in egg laying at 30 to 32 weeks of age. Also, 
their egg production rate is highest during the first 
laying years and the ovulatory cycle ranges from 24 to 
26 hours depending on the age of the laying hen (Ba-
rua et al., 2009). Likewise with humans, both ovulatory 
cycles and follicular development are regulated by ova-
rian steroid hormones and pituitary gonadotrophins (Ro-
binson and Etches, 1986). These similarities in aspects 
of reproductive physiological functions between hu-
mans and chickens, as well as accessibility and high 
relevance are evidence that laying hens are the most 
appropriate experimental animal model for elucidation 
of the etiology human ovarian cancer. Furthermore, di-
agnostic molecular biomarkers for human ovarian can-
cer are usually expressed in chicken ovarian cancers. 
CA125 is an important biomarker for diagnosing hu-
man ovarian cancer and it is expressed in spontaneous 
ovarian adenocarcinomas in chickens (Jackson et al., 
2007). In addition, expression of several growth factors 
and their receptors (e.g., TGFA, EGFR), as well as hu-
man ovarian cancer signaling pathways (e.g., EGFR/ 
PI3K and AKT/PI3K), and markers of cell proliferation 
(e.g., cytokeratin AE1/AE3, PCNA) coincide with deve- 
lopment of both human and chicken ovarian cancers 
(Liu et al., 2009; Liu et al., 2010; Rodriguez-Burford et 
al., 2001). Collectively, the laying hen is likely the best 
animal model for epithelia-derived ovarian cancer re-

search due to its similar morphological aspects and etio-
logical characteristics when compared with ovarian can-
cer in women.

CONCLUSION

This present review provides information on unique 
similarities in the characteristics of human and chicken 
ovarian cancers, and the potential of the laying hen as 
the appropriate animal model for human ovarian can-
cer research. This review also provides new insights in-
to both genetic and epigenetic regulation for initiation, 
progression and development of human EOC, and dis-
cusses highly relevant molecular targets for the devel-
opment of therapeutic agents and applications for treat-
ment and monitoring of epithelia-derived ovarian can-
cers in women.
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