DOI QR코드

DOI QR Code

Extraction Process of Lead and Variations of Physicochemical Properties using the Smelting Experiment of Galena

방연석 제련실험을 통한 납 추출과정 및 물리화학적 거동변화 연구

  • Han, Woo-Rim (Conservation Science Division, National Research Institute of Cultural Heritage) ;
  • Kim, So-Jin (Conservation Science Division, National Research Institute of Cultural Heritage) ;
  • Lee, Eun-Woo (Conservation Science Division, National Research Institute of Cultural Heritage) ;
  • Hwang, Jin-Ju (Conservation Science Division, National Research Institute of Cultural Heritage) ;
  • Kim, Su-Ki (Department of Conservation of Cultural Heritage, Yong-in University) ;
  • Han, Min-Su (Conservation Science Division, National Research Institute of Cultural Heritage)
  • 한우림 (국립문화재연구소 보존과학연구실) ;
  • 김소진 (국립문화재연구소 보존과학연구실) ;
  • 이은우 (국립문화재연구소 보존과학연구실) ;
  • 황진주 (국립문화재연구소 보존과학연구실) ;
  • 김수기 (용인대학교 문화재학과) ;
  • 한민수 (국립문화재연구소 보존과학연구실)
  • Received : 2013.02.08
  • Accepted : 2013.03.13
  • Published : 2013.03.20

Abstract

This study aims at identifying the variation of physicochemical properties for galena ore in order to use it in understanding of manufacturing techniques in terms of metallurgical method and smelting or refining process for obtaining lead. The ores in the study obtained from the operating mine have been washed and pre-treated for a test. Metallic lead has been extracted by roasting process. The result displays that galena is still in present in the matt despite of exposure to high temperature, over $1000^{\circ}C$. Nearly $11.1g/cm^3$ specific gravity metallic lead has been collected from the refining test of which aim was to remove the remnant galena and a trace of concentrated silver has been identified at the grain boundary. The result suggests that at least one refining process was essential to acquire high purity metallic lead and cupellation had been executed to remove remnant silver.

납을 획득하는 방법과 처리과정에서 일어나는 물리 화학적 거동변화를 확인함으로써 납이 함유된 고대 금속유물의 제작기법 연구에 활용하고자 방연석을 현재 가행 중인 광산에서 채취하여 세척 및 선광 등의 전처리 공정을 거쳐 제련 및 정련실험을 실시하였다. 실험결과, 납은 배소-화학반응에 의해 추출되며, $1,000^{\circ}C$이상의 고온에서도 방연석이 matte 내 존재하고 있음을 알 수 있었다. 이후 잔존하고 있는 방연석을 제거하기 위해 정련실험을 실시한 결과, 약 $11.1g/cm^3$의 비중을 갖는 금속 납이 추출되었으며 방연석 내 미량으로 존재하고 있던 Ag가 입계 내에 응집되는 것을 확인하였다. 이를 통해 고순도의 납을 제작하기 위해서는 적어도 1번 이상의 정련 과정과 은을 제거하기 위한 회취법 등이 시행되었을 것이다.

Keywords

References

  1. Chakrabartl, D.J. and Lughlin, D.E., 1984, The Cu-Pb (copper-lead) system. Journal of Phase Equilibria. 5, 503-510.
  2. Cho, M.H. and Lee, J.H., 1993, Extractive metallurgy of non-ferrous metal. Hanyang University, Korea. (in Korean)
  3. Encyclopedia Britannica Online, 2012, Korea.
  4. Heo, I.K., Jo, N.C. and Kang, H.T., 2007, Provenance and metallugical study on bronze mirrors excavated from Mireuksaji temple site, Iksan. Journal of Conservation Science, 20, 23-30. (in Korean with English abstract)
  5. Hermann Schumann and Heinrich Oette, 1996, Metallografie, Node Media.
  6. Jeong, K.Y. and Lee, J.H., 2009, A study of the microstructure and provenance area of bronze spoons excavated from the Ok-dong site in Andong, Journal of Conservation Science, 25, 411-420. (in Korean with English abstract)
  7. Jo, N.C. and Kang, H.T., 2008, Chemical composition and lead isotope ratio of Oeosa (temple) bronze bell (Treasure No.1280) in Pohang-city. Korean Ancient Historial Society Journal, 61, 85-97. (in Korean with English abstract)
  8. Jo, S.M., 2012, Investigation of metallurgical characteristics on the reproducer of slim bronze dagger excavated at Gardong remains in Wanju, Korea. Graduate School of Kongju National University, Korea. (in Korean with English abstract)
  9. Jung, Y.D. and Jung, W.S., 2007, Research papers: microstructure and component analysis of bronze artifacts excavated from the Shilla Wang-kyoung and the estimation of the forging technology. Korean Journal of Metals and Materials, 45, 36-43. (in Korean with English abstract)
  10. Kang, H.T., Jeong, K.Y., Jo, S.K. and Lee, M.H., 2003, Scientific analysis of bronze artifacts from Wonbuk-ni site, Nonsan. Korean Ancient Historial Society Journal, 39, 19-30. (in Korean with English abstract)
  11. Kang, H.T., Kim, K.H. and Jeong, K.Y., 2005, Raw material and provenance of coin minted in Goryo Dynasty(I). Journal of Conservation Science, 17, 33-38. (in Korean with English abstract)
  12. Kang, T., Kim, K.W., Lee, C.K. and Son, H.J., 2011, Recycling and using of zinc and lead. Korea Metal Journal. (in Korean with English abstract)
  13. Kim, H.S., Chae, S.C., Kim, J.Y., Sohn, J.S. and Kim, S.B., 2008, Gracity separation characteristic for the gold.silver ores on the Philippine Mankayan district. The Mineralogical Society of Korea, 21, 383-395 (in Korean with English abstract)
  14. Lee, K.K. and Choi, J., 2008, Ojuseojongbakmulgobeon. Hakyoun, Korea. (in Korean)
  15. Lee, S.I. and Seo, C.J., 1999, Extractive Metallurgy of Non-ferrous Metal. Munundang, Korea. (in Korean)
  16. Rosenqvist, T., Kang, T. and Son, H.J., 1987, Principles of extractive metallurgy, Heejungdang, Korea. (in Korean)
  17. Scott, D.A., 1991, Metallorgaphy and Microstructure of ancient and Historic metals. The Getty Conservation Institute, 1-155, Los Angeles.
  18. Shin, I.C., Shin, D.H., Yi, H.I. and Han. S.J., 1998, A special issue on sea level and paleoenvironmental applications of foraminiferal studies. 53th Annual Conference of the Geological Society of Korea (Abstract), 60.
  19. Sung, E.S. and Choi, B.K., 2009, Chon Gong Gaemul. Bumwoosa. (in Korean)
  20. Tylecote, R.F., 1986, The prehistory of Metallurgy in the British lsles. Institute of Metals, 1-257, London.

Cited by

  1. Metallurgical Analysis for Non-ferrous Smelting Slag Collected from Seosan Area vol.32, pp.2, 2016, https://doi.org/10.12654/JCS.2016.32.2.08