DOI QR코드

DOI QR Code

RADIATION-INDUCED DISLOCATION AND GROWTH BEHAVIOR OF ZIRCONIUM AND ZIRCONIUM ALLOYS - A REVIEW

  • Choi, Sang Il (Interdisciplinary School of Green Energy Ulsan National Institute of Science and Technology (UNIST)) ;
  • Kim, Ji Hyun (Interdisciplinary School of Green Energy Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2013.04.25
  • Accepted : 2013.06.07
  • Published : 2013.06.25

Abstract

Zirconium and zirconium alloys are widely used as nuclear reactor core materials such as fuel cladding and guide tubes because they have excellent corrosion- and radiation-resistant properties. In the reactor core, zirconium alloys are subjected to high-energy neutron fluence, causing radiation-induced dislocation and growth. To discern a possible correlation between radiation-induced dislocation and growth, characteristics of dislocation and growth in zirconium and its alloys are examined. The radiation-induced dislocation including and dislocation loops is reviewed in various temperature and fluence ranges, and their growth behavior is examined in the same way. To further a fundamental understanding, radiation-induced growth prediction models are briefly reviewed. This research will assist in the design of zirconium based components as well as the safety analysis of various reactor conditions, in both research and commercial reactors.

Keywords

References

  1. C.H. Woo, and U. Gosele, Dislocation bias in an anisotropic diffusive medium and irradiation growth. Journal of Nuclear Materials, 119(2-3), pp. 219-228 (1983) https://doi.org/10.1016/0022-3115(83)90198-8
  2. W. Frank, Intrinsic point defects in hexagonal close-packed metals. Journal of Nuclear Materials, 159, pp.122-148 (1988) https://doi.org/10.1016/0022-3115(88)90090-6
  3. R.C. Pasianot, and A.M. Monti, A many body potential for ${\alpha}$-Zr. Application to defect properties. Journal of Nuclear Materials, 264(1-2), pp. 198-205 (1999) https://doi.org/10.1016/S0022-3115(98)00477-2
  4. Y.N. Osetsky, D.J. Bacon, and N. De Diego, Anisotropy of point defect diffusion in alpha-zirconium. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 33(3), pp. 777-782 (2002) https://doi.org/10.1007/s11661-002-1007-3
  5. G.J.C. Carpenter, R.H. Zee, and A. Rogerson, Irradiation growth of zirconium single crystals: A review. Journal of Nuclear Materials, 159(C), pp. 86-100 (1988) https://doi.org/10.1016/0022-3115(88)90087-6
  6. G.J.C. Carpenter, et al., Irradiation growth of zirconium single crystals. Journal of Nuclear Materials, 101(1-2), pp. 28-37 (1981) https://doi.org/10.1016/0022-3115(81)90441-4
  7. A. Rogerson, Irradiation growth in zirconium and its alloys. Journal of Nuclear Materials, 159(C), pp. 43-61 (1988) https://doi.org/10.1016/0022-3115(88)90084-0
  8. R. B. Adamson, Irradiation Growth of Zircaloy, Zirconium in the Nuclear Industry, American Society for Testing and Materials, STP 633, pp. 326-343 (1977)
  9. R.A. Murgatroyd, and A. Rogerson, Irradiation growth in annealed zircaloy-2. Journal of Nuclear Materials, 79(2), pp. 302-311 (1979) https://doi.org/10.1016/0022-3115(79)90095-3
  10. A. Rogerson, and R.A. Murgatroyd, Effects of texture and temperature cycling on irradiation growth in cold-worked zircaloy-2 at 353 and 553 K. Journal of Nuclear Materials, 80(2), pp. 253-259 (1979) https://doi.org/10.1016/0022-3115(79)90188-0
  11. A. Jostsons, , P.M. Kelly, and R.G. Blake, The nature of dislocation loops in neutron irradiated zirconium. Journal of Nuclear Materials, 66(3), pp. 236-256 (1977) https://doi.org/10.1016/0022-3115(77)90113-1
  12. A. Jostsons, P. M. Kelly, R. G. Blake, and K. Farrell, Neutron irradiation-induced defect structures in zirconium. American Society for Testing and Materials, STP 683, pp. 46-61 (1979)
  13. D.O. Northwood, et al., Characterization of neutron irradiation damage in zirconium alloys - an international "round-robin" experiment. Journal of Nuclear Materials, 79(2), pp. 379-394 (1979) https://doi.org/10.1016/0022-3115(79)90103-X
  14. D.O. Northwood, Irradiation damage in zirconium and its alloys. Energy Reviews, 15(4), pp. 547-610 (1977)
  15. D.O. Northwood, and R.W. Gilbert, Neutron radiation damage in zirconium and its alloys. Radiation Effects, 22(2), pp. 139-140 (1974) https://doi.org/10.1080/00337577408232160
  16. R.W., K. Gilbert, Farrell, and C.E. Coleman, Damage structure in zirconium alloys neutron irradiated at 573 to 923 k. Journal of Nuclear Materials, 84(1-2), pp. 137-148 (1979) https://doi.org/10.1016/0022-3115(79)90157-0
  17. V. Fidleris, R.P. Tucker and R.B. Adamson, An Overview of Microstructural and Experimental Factors That Affect the Irradiation Growth Behavior of Zirconium Alloys. Zirconium in the Nuclear Industry, American Society for Testing and Materials, STP 633, pp. 326-343 (1977)
  18. W.L. Bell, Corduroy contrast observations in neutronirradiated zirconium and zircaloy. Journal of Nuclear Materials, 55(1), pp. 14-22 (1975) https://doi.org/10.1016/0022-3115(75)90133-6
  19. R. B. Adamson, Bell, W. L., and Lee, D., "Use of Ion Bombardment to Study Irradiation Damage in Zirconium Alloys," Zirconium in Nuclear Applications, American Society for Testing and Materials, STP 551, pp. 215- 228 (1974)
  20. M. Griffiths, R.A. Holt, A. Rogerson, Microstructural aspects of accelerated deformation of Zircaloy nuclear reactor components during service. Journal of Nuclear Materials, 225, pp. 245-258 (1995) https://doi.org/10.1016/0022-3115(94)00687-3
  21. R.A. Holt, and R.W. Gilbert, Component dislocations in annealed Zircaloy irradiated at about 570 K. Journal of Nuclear Materials, 137(3), pp. 185-189 (1986) https://doi.org/10.1016/0022-3115(86)90218-7
  22. Y. De Carlan, et al., Influence of iron in the nucleation of component dislocation loops in irradiated zircaloy-4. American Society for Testing and Materials, STP 1295, pp. 638-653 (1996)
  23. G.P. Kobylyansky, A. E. Novoselov, Z. E. Ostrovsky, A. V. Obukhov, V. Yu. Shishin, V. N. Shishov, A. V. Nikulina, M. M. Peregud, S. T. Mahmood, D. W. White, Y-P. Lin, and M. A. Dubecky, Irradiation-induced growth and microstructure of recrystallized, cold worked and quenched zircaloy- 2, NSF, and E635 alloys. American Society for Testing and Materials, STP 1505, pp.564-582 (2008)
  24. M. Griffiths, A review of microstructure evolution in zirconium alloys during irradiation. Journal of Nuclear Materials, 159(C), pp. 190-218 (1988) https://doi.org/10.1016/0022-3115(88)90093-1
  25. M. Griffiths, Microstructure evolution in Zr alloys during irradiation: Dose, dose rate, and impurity dependence. American Society for Testing and Materials, STP 1505, pp.19-29 (2008)
  26. M. Griffiths, et al., Neutron damage in zirconium alloys irradiated at 644 to 710 K. Journal of Nuclear Materials, 150(2), pp. 159-168 (1987) https://doi.org/10.1016/0022-3115(87)90071-7
  27. V. Fidleris, The irradiation creep and growth phenomena. Journal of Nuclear Materials, 159(C), pp. 22-42 (1988) https://doi.org/10.1016/0022-3115(88)90083-9
  28. S.N. Buckley, Properties of reactor materials and effects of irradiation damage, pp. 443 (1961)
  29. R.A. Holt, and E.F. Ibrahim, Factors affecting the anisotropy of irradiation creep and growth of zirconium alloys. Acta Metallurgica, 27(8) pp. 1319-1328 (1979) https://doi.org/10.1016/0001-6160(79)90201-3
  30. R.A. Holt, Effect of microstructure on irradiation creep and growth of zircaloy pressure tubes in power reactors. Journal of Nuclear Materials, 82(2), pp. 419-429 (1979) https://doi.org/10.1016/0022-3115(79)90024-2
  31. R.A. Holt, Mechanisms of irradiation growth of alpha-zirconium alloys. Journal of Nuclear Materials, 159(C), pp. 310-338 (1988) https://doi.org/10.1016/0022-3115(88)90099-2
  32. R. Sizmann, The effect of radiation upon diffusion in metals. Journal of Nuclear Materials, 69-70(C), pp. 386-412 (1978) https://doi.org/10.1016/0022-3115(78)90256-8
  33. L.K. Mansur, Theory and experimental background on dimensional changes in irradiated alloys. Journal of Nuclear Materials, 216(C), pp. 97-123 (1994) https://doi.org/10.1016/0022-3115(94)90009-4
  34. F. W. Wiffen, In Proceedings of the 1971 International Conference on Radiation-Induced Voids in Metals, CONF 710601, U.S. Atomic Energy Albany, pp 386-396 (1972)
  35. K. Farrell, J. T. Houston, A. Wolfenden, R. T. King, and A. Jostsons, In Proceedings of the 1971 International Conference on Radiation-Induced Voids in Metals, CONF 710601, U.S. Atomic Energy Albany, pp 376-385 (1972)
  36. T. Diaz de la Rubia and M.W. Guinan, Journal of Nuclear Materials, 174, pp. 151 (1990) https://doi.org/10.1016/0022-3115(90)90229-G
  37. C.A. English, et al., Summary of silkeborg workshop on "Radiation damage correlation for fusion conditions". Journal of Nuclear Materials, 174(2-3), pp. 352-354 (1990) https://doi.org/10.1016/0022-3115(90)90246-J
  38. A.J.E. Foreman, CA. English and W.J. Phythian, Philosophical Magazine. A66, pp. 655-671 (1992)
  39. C.H. Woo, B.N. Singh, and H. Heinisch, A diffusion approach to modelling of irradiation-induced cascades. Journal of Nuclear Materials, 174(2-3), pp. 190-195 (1990) https://doi.org/10.1016/0022-3115(90)90233-D
  40. C.H. Woo, B.N. Singh, and H.L. Heinisch, Diffusion-based evaluation of defect processes in cascade zones. Journal of Nuclear Materials, 179-181(PART 2), pp. 951-953 (1991) https://doi.org/10.1016/0022-3115(91)90247-5
  41. S.R. MacEwen, and G.J.C. Carpenter, Calculations of irradiation growth in zirconium. Journal of Nuclear Materials, 90(1-3), pp. 108-132 (1980) https://doi.org/10.1016/0022-3115(80)90249-4
  42. R.A. Holt, C.H. Woo, and C.K. Chow, Production bias - a potential driving force for irradiation growth. Journal of Nuclear Materials, 205(C), pp. 293-300 (1993) https://doi.org/10.1016/0022-3115(93)90092-D
  43. S.I. Golubov, A.V. Barashev, and R.E. Stoller, Radiation growth of HCP metals under cascade damage conditions, Material Research Society, 1383, pp 55-60 (2012)
  44. A. Hardouin Duparc, et al., Microstructure modelling of ferritic alloys under high flux 1 MeV electron irradiations. Journal of Nuclear Materials, 302(2-3), pp. 143-155 (2002) https://doi.org/10.1016/S0022-3115(02)00776-6
  45. F. Christien and A. Barbu, Effect of self-interstitial diffusion anisotropy in electron-irradiated zirconium: A cluster dynamics modeling. Journal of Nuclear Materials, 346(2-3), pp. 272-281 (2005) https://doi.org/10.1016/j.jnucmat.2005.06.024
  46. F. Christien and A. Barbu, Cluster Dynamics modelling of irradiation growth of zirconium single crystals. Journal of Nuclear Materials, 393(1), pp. 153-161 (2009) https://doi.org/10.1016/j.jnucmat.2009.05.016
  47. C.H. Woo, Polycrystalline effects on irradiation creep and growth in textured zirconium. Journal of Nuclear Materials, 131(2-3), pp. 105-117 (1985.) https://doi.org/10.1016/0022-3115(85)90449-0
  48. A.R. Causey, C.H. Woo, and R.A. Holt, The effect of intergranular stresses on the texture dependence of irradiation growth in zirconium alloys. Journal of Nuclear Materials, 159(C), pp. 225-236 (1988) https://doi.org/10.1016/0022-3115(88)90095-5

Cited by

  1. Modeling of radiation-induced sink evolution in 6061 aluminum alloy in nuclear reactors vol.213, pp.11, 2016, https://doi.org/10.1002/pssa.201600124
  2. In Situ TEM Study of Microstructure Evolution of Zr-Nb-Fe Alloy Irradiated by 800 keV Kr2+ Ions vol.10, pp.4, 2017, https://doi.org/10.3390/ma10040437
  3. Excitation Function Calculations of Neutron-Induced Reactions of Some Zirconium Target Isotopes vol.36, pp.6, 2017, https://doi.org/10.1007/s10894-017-0143-0
  4. ion irradiation of Zr–2.5 wt.% Nb alloy pressure tube pp.1478-6443, 2019, https://doi.org/10.1080/14786435.2018.1543963