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ON MULTIPLIERS OF BCC-ALGEBRAS

Kyung Ho Kim* AND Hyo JIN LM

Abstract. In this paper, we introduced the notion of multiplier of
a BCC-algebra, and gave some properties of BCC-algebras. Also,
we characterized kernels and normal ideals of multipliers on BCC-
algebras.

1. Introduction

A BCK-algebra is an important class of logical algebras introduced
by K. Iséki ([5]) and was extensively investigated by several researchers.
The class of all BCK-algebras is a quasivariety. K. Iséki posed an inter-
esting problem (solved by A. Wronski [10]) whether the class of BCK-
algebras is a variety. In connection with this problem, Y. Komori ([7])
introduced a notion of BCC-algebras, and W. A. Dudek ([1, 2]) redefined
the notion of BCC-algebras by using a dual form of the ordinary defini-
tion in the sense of Y. Komori. C. Prabpayak and U. LerrawatIn ([8])
introduced the derivation of BCC-algebra. In [9] a partial multiplier on
a commutative semigroup (A4,-) has been introduced as a function F'
from a nonvoid subset D of A into A such that F(z) -y = x - F(y)
for all x,y € Dp. In this paper, we introduce the notion of multiplier
of a BCC-algebra, and give some properties of BCC-algebras. Also, we
characterize Kernel of multipliers on BCC-algebras.

2. Preliminary

An algebra X = (X,x*,0) of type (2,0) is called a BCC-algebra if it
satisfies the following axioms: For all z,y,z € X,
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(1) ((z*y)* (zxy)) * (zx2) =0,
(2) zxx =0,
(3) 0%z =0,
(4) zx0 ==z,

(5) zxy=0and y*xxz =0 imply z = y.
Note that (x * y) xx = 0 from (1).

A subset S is subalgebra of X if x xy € S for all z,y € S. Note that
(12]) @ BCC-algebra is a BCK-algebra iff it satisfies the identity

(6) (zxy)*xz=(x*z)xyforal z,y,z € X,

which holds in all BCK-algebras. Methods of construction of BC'C-
algebras from the given BCK-algebras are described in [2] and [3].

The class of all BC'C-algebra is a quasivariety ([7]), but many subclasses
of this quasivariety form variety ([2]). Also the quasivariety of all BCK-
algebras has many well described subclasses which are varieties. On any
BC(C-algebra X (similarly, as in the case of BC'K-algebras) one can
define the natural order < putting

(7) x <y if and only if x*y =0 for all z,y € X,

It is not difficult to verify that this order is partial and 0 is its smallest
element. Moreover, for all z,y,z € X

(8) (wxy)*(2xy) <zx*z,
(9) x <y implies x*xz<yx*xzand zxy < zx*x.

For elements x and y of a BCC-algebra X, we denote x Ay = y* (y * x).

A BCC-algebra is said to be commutative if it satisfies for all z,y € X,
xx(zxy)=yx(yxz), ie, zAy=yAx.

Let X be a BCC-algebra. A subset I of a BCC-algebra X is called an
ideal if it satisfies

(1) 0 e,

(2)Ifyel and x*xy € I, then z € I for all z,y € X.

3. Multipliers of BCC-algebras

In what follows, let X denote a BCC-algebra unless otherwise speci-
fied.
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Definition 3.1. Let X be a BCC-algebra. A self-map f of X is called
a multiplier if

flaxy) = flz)*y
for all z,y € X.

Example 3.2. Let X = {0,1,2,3} a set in which “¥” are defined by
0 1 2

= OO
N O OO
OO OO w

*
00
111
2|2
313

X

It is easy to check that (

by
0 ifx=0,1,2
-

,*) is a BCC-algebra. Defineamap f: X — X

1 ifz=3
Then it is easy to check that f is a multiplier of a BCC-algebra X.

Example 3.3. Let X = {0, 1,2,3} a set in which “x” are defined by

«[0 1 2
0

O R = OlWw

0 00
111 0 0
212 10
313 3 3
It is easy to check that (X

by
0 ifz=0,1,2
-

,*) is a BCC-algebra. Defineamap f: X — X

3 ifx=3
Then it is easy to check that f is a multiplier of a BCC-algebra X.

Example 3.4. The identity mapping ¢, the unit mapping ¢ : a — 1
are multipliers of X.

Proposition 3.5. Let f be a multiplier of X. Then we have f(xzxf(z)) =
0 for all x € X.

Proof. Let z € X. Then f(x * f(z)) = f(z) * f(x) = 0. This completes
the proof. O
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Definition 3.6. A self-map f of X is said to be regular if f(0) = 0.

Proposition 3.7. Let f be a regular multiplier of X. Then the following
identities hold.

(i) f(x) <z forall x € X.
(i) f(z*xy) < f(z)* f(y) for all z,y € X.

Proof. (i) For all x € X, we have 0 = f(0) = f(z *xx) = f(z) * x, that
is, f(z) < =x.
(ii) Since f(y) < y for all y € X, we have f(z*xy) = f(z)*xy <

f(x) = f(y) by (9). =

Definition 3.8. Let X be a BCC-algebra and f be a self-map of X. If
x <y implies f(z) < f(y) for all x,y € X, f is said to be isotone.

Proposition 3.9. Let f be a regular multiplier of X. If f is an endo-
morphism on X, then f is isotone.

Proof. Let  <y. Then zxy =0and 0 = f(0) = f(zxy) = f(x)* f(y).
Hence f(z) < f(y). This completes the proof. O

Proposition 3.10. Let f is a non-expansive map on a BCC-algebra X,
ie, f(x) <z forall z € X. Then f(z)*xy < zx f(y) for all z,y € X.

Proof. Suppose that f is a non-expansive map on X and z,y € X.
Then f(z) <z and f(y) <y. Hence f(z)*xy < x*xyand xxy < zx f(y)
by (9). It follows that f(z)xy < x * f(y). O

Proposition 3.11. Let f be a multiplier of a BCC-algebra. Define
f2(x) = f(f(x)) for all z € X. If f?2 = f, then f is regular.

Proof. Since 0 = x * z for all € X, we have f(0) = f(f(0) = f(0))
F2(0) = £(0) = £(0) + £(0) = 0.

o

Let X be a BCC-algebra and fi, fo two self-maps. We define f10 fs :
X — X by

(f1o f2)(@) = fi(f2(2))
for all z € X.
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Proposition 3.12. Let X be a BCC-algebra and f1, fo two multipliers.
Then fi o fo is also a multiplier of X.

Proof. Let X be a BCC-algebra and fi, fo two multipliers. Then we

have
(f1o f2)(axb) = fi(f2(axD))
= (fi(fa(a) x b))
= f1(f2(a)) x b
= (f10 f2)(a)
for all a,b € X. This completes the proof. O

Let X be a BCC-algebra and fi, fo two self-maps. We define (f1 A
f2)(x) by
(finfo)(z) = fi(z) A fa(2)
for all x € X.

Proposition 3.13. Let X be a BCC-algebra and f1, fo two multipliers.
Then fi A fo is also a multiplier of X.

Proof. Let X be a BCC-algebra and fi, fo two multipliers. Then we
have

(fi A f2)(axb) = fi(ax )/\f2(a*b)
fi(a) xb A fa(a) *
fa(a) x b ((f () b) * (fi(a) * b))
= (fa(a) * b) = (f2(a )*fl(a))
((f2(a) * (fa(a) * f1(a))) *
= (fi(a) A fo(a ))*b
= (fi A f2)(a) *
for all a,b € X. This completes the proof. O

~— —

Let X; and X5 be two BCC-algebras. Then X; x X3 is also a BCC-
algebra with respect to the point-wise operation given by

(a,b) % (¢,d) = (a*c,bxd)
for all a,c € X7 and b,d € Xo.
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Proposition 3.14. Let X; and X5 be two BCC-algebras. Define a map
f:XixXe— Xy xXoby f(z,y) = (2,0) for all (z,y) € X7 X Xo. Then
f is a multiplier of X7 x Xo with respect to the point-wise operation.

Proof. Let (z1,91), (z2,y2) € X1 X Xa2. The we have

(f((@1,01) * (22,42))) = fl21 * 22,51 * y2)
= (21 * 22,0)
= (1 * 22,0 x y2)
= (21,0) * (z2,y2)
= f(z1,91) * (22, y2).

Therefore f is a multiplier of the direct product X; x Xo. U

Let f be a multiplier of X. Define a set Fiz¢(X) by
Fizpy(X):={zx € X | f(z) =x}
for all z € X.

Proposition 3.15. Let f be a multiplier of X. If x € Fiz;(X), then
we have (fo f)(z) = =.

Proof. Let x € Fiiz;(X). Then we have

(f o )(x) = f(f(2)) = f(z) = .

This completes the proof. O

Proposition 3.16. Let f be a multiplier of a BCC-algebra X. Then
Fizy(X) is a subalgebra of X.

Proof. Let f be a multiplier of X and x,y € Fiz;(X). Then we have
f(z) =2 and f(y) =y, and so f(x xy) = f(x) xy = x x y. This implies
xxy € Fizy(X). This completes the proof. O

Proposition 3.17. Let X be a BCC-algebra and f be a multiplier of
X. If v € X and y € Fizy(X), then z Ay € Fizxp(X).
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Proof. Let f be a multiplier and y € Fiz¢(X). Then we have f(y) =

and so
flany)=flyx(y*z)) = fy) = (y*z)
=yx*(y*xx)) =AYy
This completes the proof. O

Let us recall from [9] that the composition of two multipliers f and
g of a BCC-algebra X is a multiplier of X where (f o g)(z) = f(g(x))
for all x € X.

Theorem 3.18. Let f and g be two multipliers of X such that fog=
g o f. Then the following conditions are equivalent.

(i) f=g.

(i) f(X) = g(X).

(ili) Fizp(X) = Fizg(X).

Proof. (i)= (ii): It is obvious.
(i) = (iii): Assume that f(X) = ¢g(X). Let € Fixzy(X). Then
x = f(z) € f(X) = g(X). Hence z = g(y) for some y € X. Now
g(z ) 9(g(v)) = ¢*(y) = g(y) = z. Thus @ € Fizy(X). Therefore,
x

Fixy C Fi (X) 1m11arly, we can obtain Fizy(X) C Fixg(X). Thus
Fizg(X) = Fizg(X).

(ili) = (i): Assume that Fizf(X) = Fizy(X). Let £ € X. Since
f(z) € Fizp(X) = Fizxg(X), we have g(f(x)) = f(x). Also, we obtain
g(x) € Fz:vg( ) = Fizy(X). Hence we get f(g(z)) = g(x). Thus we
have

f(z) = g(f(x)) = (go f)(x) = (fog)(x) = fg(x)) = g(x).
Therefore, f and g are equal in the sense of mappings. O

Let f be a multiplier of X. Define a Kerf by
Kerf={xe€ X | f(x) =0}
for all x € X.

Proposition 3.19. Let f be a multiplier of X. Then Kerf is a subal-
gebra of X.

Proof. Let f be a multiplier of X. Let z,y € Kerf. Then f(z) =
and f(y) = 0. Hence we have f(zx xy) = f(x)*y = 0y = 0, and so
xxy € Kerf. Thus Kerf is a subalgebra of X. O
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Proposition 3.20. Let X be a commutative BCC-algebra. If y € Kerf
and z <y, then we have x € Kerf.

Proof. Let f be amultiplier of X. If y € Kerf and < y. Then f(y) =0
and z xy = 0.

|
~
<
*
—~
<
*
8
N—
S—
I
~
—~
<
S—
*
—
<
*
8
SN—
I
o
*
—~
<
*
3
N—

and so z € Kerf. This completes the proof. O

Theorem 3.21. Let f be a multiplier of X and an endomorphism. Then
Kerd is an ideal of X.

Proof. Clearly, 0 € Kerf. Let y € Kerf and z xy € Kerf. Then we
have f(y) = f(z *xy) =0, and so

0=flzxy)=f(z)* fly) = fz)*0=f(z)

This implies x € Kerf. This completes the proof. U

Definition 3.22. Let X be a BCC-algebra. A non-empty set I of X is
called a normal ideal if it satisfies the following conditions:

(i) 0 e I,
(i) €I and y € X imply x xy € I.

Example 3.23. Let X = {0,1,2,3} a set in which “«” are defined by

|01 23
0[0 00 0
111010
202 2 00
313310

It is easy to check that (X, x) is a BCC-algebra. Let I = {0,2}. Then it
is easy to check that I is a normal ideal of a BCC-algebra X.

Theorem 3.24. Let f be a multiplier of a BCC-algebra X. For any
normal ideal I of X, both f(I) and f~!(I) are normal ideals of X.
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Proof. Clearly, 0 = f(0). Let x € X and a € f(I). Then a = f(s) for
some s € I. Now axz = f(s)xx = f(sxx) € f(I) because s xx € I.
Therefore f(I) is a normal ideal of X. Since I is a normal ideal of X,
we obtain f(0) =0 € I. Hence 0 = f~1(I). Let z € X and a € f~1(I).
Then f(a) € I. Since I is a normal ideal, we get f(axz) = f(a)*x € I.
Hence a * x € f~1(I). Therefore f~1(I) is a normal ideal of X. O

Proposition 3.25. For any multiplier f of a BCC-algebra X, Kerf is
a normal ideal of X.

Proof. Clearly, 0 € Kerf. Let a € Kerf and € X. Then f(axz) =
f(a)*x =02 =0. Hence a x z € Kerf, which implies that Kerf is a
normal ideal of X. O

Lemma 3.26. Let f be a multiplier of a BCC-algebra X. Then I'm(f) =
Fizy(X).

Proof. Let € Fixy(X). Then x = f(x) € Im(f). Hence Fizs(X) C
Im(f). Now let a € Im(f). Then we get a = f(b) for some b € X. Thus
f(a) = f(f(b)) = f(b) = a, which implies Im(f) C Fix;(X). Therefore,
Im(f) = Fizy(X). This completes the proof. O

Theorem 3.27. Let f be a multiplier of a BCC-algebra X. Then we
have

(i) Fizy(X) is a normal ideal of X.

(ii) Im(f) is a normal ideal of X.

Proof. (i) Since f(0) = 0, we have 0 € Fizs(X). Let + € X and
a € Fizg(X). Then f(a) = a Now f(a*x) = f(a) *x = a * x. Hence
axx € Fizy(X). Therefore, Fiz;(X) is a normal ideal of X.

(ii) Obviously, 0 = f(0). Let x € X and a € Im(f). Then a = f(b)
for some b € X. Now axx = f(b) xx = f(bxx) € f(X). Therefore,
Im(f) is a normal ideal of X. O
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