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ON MULTIPLIERS OF BCC-ALGEBRAS

Kyung Ho Kim∗ and Hyo Jin Lim

Abstract. In this paper, we introduced the notion of multiplier of
a BCC-algebra, and gave some properties of BCC-algebras. Also,
we characterized kernels and normal ideals of multipliers on BCC-
algebras.

1. Introduction

A BCK-algebra is an important class of logical algebras introduced
by K. Iséki ([5]) and was extensively investigated by several researchers.
The class of all BCK-algebras is a quasivariety. K. Iséki posed an inter-
esting problem (solved by A. Wroński [10]) whether the class of BCK-
algebras is a variety. In connection with this problem, Y. Komori ([7])
introduced a notion of BCC-algebras, and W. A. Dudek ([1, 2]) redefined
the notion of BCC-algebras by using a dual form of the ordinary defini-
tion in the sense of Y. Komori. C. Prabpayak and U. LerrawatIn ([8])
introduced the derivation of BCC-algebra. In [9] a partial multiplier on
a commutative semigroup (A, ·) has been introduced as a function F
from a nonvoid subset DF of A into A such that F (x) · y = x · F (y)
for all x, y ∈ DF . In this paper, we introduce the notion of multiplier
of a BCC-algebra, and give some properties of BCC-algebras. Also, we
characterize Kernel of multipliers on BCC-algebras.

2. Preliminary

An algebra X = (X, ∗, 0) of type (2,0) is called a BCC-algebra if it
satisfies the following axioms: For all x, y, z ∈ X,
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(1) ((x ∗ y) ∗ (z ∗ y)) ∗ (x ∗ z) = 0,
(2) x ∗ x = 0,
(3) 0 ∗ x = 0,
(4) x ∗ 0 = x,
(5) x ∗ y = 0 and y ∗ x = 0 imply x = y.

Note that (x ∗ y) ∗ x = 0 from (1).

A subset S is subalgebra of X if x ∗ y ∈ S for all x, y ∈ S. Note that
([2]) a BCC-algebra is a BCK-algebra iff it satisfies the identity

(6) (x ∗ y) ∗ z = (x ∗ z) ∗ y for all x, y, z ∈ X,
which holds in all BCK-algebras. Methods of construction of BCC-
algebras from the given BCK-algebras are described in [2] and [3].

The class of all BCC-algebra is a quasivariety ([7]), but many subclasses
of this quasivariety form variety ([2]). Also the quasivariety of all BCK-
algebras has many well described subclasses which are varieties. On any
BCC-algebra X (similarly, as in the case of BCK-algebras) one can
define the natural order ≤ putting

(7) x ≤ y if and only if x ∗ y = 0 for all x, y ∈ X,

It is not difficult to verify that this order is partial and 0 is its smallest
element. Moreover, for all x, y, z ∈ X

(8) (x ∗ y) ∗ (z ∗ y) ≤ x ∗ z,
(9) x ≤ y implies x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x.

For elements x and y of a BCC-algebra X, we denote x∧ y = y ∗ (y ∗x).

A BCC-algebra is said to be commutative if it satisfies for all x, y ∈ X,
x ∗ (x ∗ y) = y ∗ (y ∗ x), i.e., x ∧ y = y ∧ x.

Let X be a BCC-algebra. A subset I of a BCC-algebra X is called an
ideal if it satisfies

(1) 0 ∈ I,
(2) If y ∈ I and x ∗ y ∈ I, then x ∈ I for all x, y ∈ X.

3. Multipliers of BCC-algebras

In what follows, let X denote a BCC-algebra unless otherwise speci-
fied.
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Definition 3.1. Let X be a BCC-algebra. A self-map f of X is called
a multiplier if

f(x ∗ y) = f(x) ∗ y
for all x, y ∈ X.

Example 3.2. Let X = {0, 1, 2, 3} a set in which “∗” are defined by

∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 1 0 0
3 3 2 2 0

It is easy to check that (X, ∗) is a BCC-algebra. Define a map f : X → X
by

f(x) =

{
0 if x = 0, 1, 2

1 if x = 3

Then it is easy to check that f is a multiplier of a BCC-algebra X.

Example 3.3. Let X = {0, 1, 2, 3} a set in which “∗” are defined by

∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 1
2 2 1 0 1
3 3 3 3 0

It is easy to check that (X, ∗) is a BCC-algebra. Define a map f : X → X
by

f(x) =

{
0 if x = 0, 1, 2

3 if x = 3

Then it is easy to check that f is a multiplier of a BCC-algebra X.

Example 3.4. The identity mapping ε, the unit mapping ι : a 7−→ 1
are multipliers of X.

Proposition 3.5. Let f be a multiplier ofX. Then we have f(x∗f(x)) =
0 for all x ∈ X.

Proof. Let x ∈ X. Then f(x ∗ f(x)) = f(x) ∗ f(x) = 0. This completes
the proof. �
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Definition 3.6. A self-map f of X is said to be regular if f(0) = 0.

Proposition 3.7. Let f be a regular multiplier of X. Then the following
identities hold.

(i) f(x) ≤ x for all x ∈ X.
(ii) f(x ∗ y) ≤ f(x) ∗ f(y) for all x, y ∈ X.

Proof. (i) For all x ∈ X, we have 0 = f(0) = f(x ∗ x) = f(x) ∗ x, that
is, f(x) ≤ x.

(ii) Since f(y) ≤ y for all y ∈ X, we have f(x ∗ y) = f(x) ∗ y ≤
f(x) ∗ f(y) by (9). �

Definition 3.8. Let X be a BCC-algebra and f be a self-map of X. If
x ≤ y implies f(x) ≤ f(y) for all x, y ∈ X, f is said to be isotone.

Proposition 3.9. Let f be a regular multiplier of X. If f is an endo-
morphism on X, then f is isotone.

Proof. Let x ≤ y. Then x∗y = 0 and 0 = f(0) = f(x∗y) = f(x)∗f(y).
Hence f(x) ≤ f(y). This completes the proof. �

Proposition 3.10. Let f is a non-expansive map on a BCC-algebra X,
i.e., f(x) ≤ x for all x ∈ X. Then f(x) ∗ y ≤ x ∗ f(y) for all x, y ∈ X.

Proof. Suppose that f is a non-expansive map on X and x, y ∈ X.
Then f(x) ≤ x and f(y) ≤ y. Hence f(x)∗y ≤ x∗y and x∗y ≤ x∗f(y)
by (9). It follows that f(x) ∗ y ≤ x ∗ f(y). �

Proposition 3.11. Let f be a multiplier of a BCC-algebra. Define
f2(x) = f(f(x)) for all x ∈ X. If f2 = f, then f is regular.

Proof. Since 0 = x ∗ x for all x ∈ X, we have f(0) = f(f(0) ∗ f(0)) =
f2(0) ∗ f(0) = f(0) ∗ f(0) = 0. �

Let X be a BCC-algebra and f1, f2 two self-maps. We define f1 ◦ f2 :
X → X by

(f1 ◦ f2)(x) = f1(f2(x))

for all x ∈ X.
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Proposition 3.12. Let X be a BCC-algebra and f1, f2 two multipliers.
Then f1 ◦ f2 is also a multiplier of X.

Proof. Let X be a BCC-algebra and f1, f2 two multipliers. Then we
have

(f1 ◦ f2)(a ∗ b) = f1(f2(a ∗ b))
= (f1(f2(a) ∗ b))
= f1(f2(a)) ∗ b
= (f1 ◦ f2)(a) ∗ b

for all a, b ∈ X. This completes the proof. �

Let X be a BCC-algebra and f1, f2 two self-maps. We define (f1 ∧
f2)(x) by

(f1 ∧ f2)(x) = f1(x) ∧ f2(x)

for all x ∈ X.

Proposition 3.13. Let X be a BCC-algebra and f1, f2 two multipliers.
Then f1 ∧ f2 is also a multiplier of X.

Proof. Let X be a BCC-algebra and f1, f2 two multipliers. Then we
have

(f1 ∧ f2)(a ∗ b) = f1(a ∗ b) ∧ f2(a ∗ b)
= f1(a) ∗ b ∧ f2(a) ∗ b
= f2(a) ∗ b ∗ ((f2(a) ∗ b) ∗ (f1(a) ∗ b))
= (f2(a) ∗ b) ∗ (f2(a) ∗ f1(a))

= ((f2(a) ∗ (f2(a) ∗ f1(a))) ∗ b
= (f1(a) ∧ f2(a)) ∗ b
= (f1 ∧ f2)(a) ∗ b.

for all a, b ∈ X. This completes the proof. �

Let X1 and X2 be two BCC-algebras. Then X1 ×X2 is also a BCC-
algebra with respect to the point-wise operation given by

(a, b) ∗ (c, d) = (a ∗ c, b ∗ d)

for all a, c ∈ X1 and b, d ∈ X2.
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Proposition 3.14. Let X1 and X2 be two BCC-algebras. Define a map
f : X1×X2 → X1×X2 by f(x, y) = (x, 0) for all (x, y) ∈ X1×X2. Then
f is a multiplier of X1 ×X2 with respect to the point-wise operation.

Proof. Let (x1, y1), (x2, y2) ∈ X1 ×X2. The we have

(f((x1, y1) ∗ (x2, y2))) = f(x1 ∗ x2, y1 ∗ y2)
= (x1 ∗ x2, 0)

= (x1 ∗ x2, 0 ∗ y2)
= (x1, 0) ∗ (x2, y2)

= f(x1, y1) ∗ (x2, y2).

Therefore f is a multiplier of the direct product X1 ×X2. �

Let f be a multiplier of X. Define a set Fixf (X) by

Fixf (X) := {x ∈ X | f(x) = x}

for all x ∈ X.

Proposition 3.15. Let f be a multiplier of X. If x ∈ Fixf (X), then
we have (f ◦ f)(x) = x.

Proof. Let x ∈ Fixf (X). Then we have

(f ◦ f)(x) = f(f(x)) = f(x) = x.

This completes the proof. �

Proposition 3.16. Let f be a multiplier of a BCC-algebra X. Then
Fixf (X) is a subalgebra of X.

Proof. Let f be a multiplier of X and x, y ∈ Fixf (X). Then we have
f(x) = x and f(y) = y, and so f(x ∗ y) = f(x) ∗ y = x ∗ y. This implies
x ∗ y ∈ Fixf (X). This completes the proof. �

Proposition 3.17. Let X be a BCC-algebra and f be a multiplier of
X. If x ∈ X and y ∈ Fixf (X), then x ∧ y ∈ Fixf (X).
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Proof. Let f be a multiplier and y ∈ Fixf (X). Then we have f(y) = y,
and so

f(x ∧ y) = f(y ∗ (y ∗ x)) = f(y) ∗ (y ∗ x)

= y ∗ (y ∗ x)) = x ∧ y.
This completes the proof. �

Let us recall from [9] that the composition of two multipliers f and
g of a BCC-algebra X is a multiplier of X where (f ◦ g)(x) = f(g(x))
for all x ∈ X.

Theorem 3.18. Let f and g be two multipliers of X such that f ◦ g =
g ◦ f. Then the following conditions are equivalent.

(i) f = g.
(ii) f(X) = g(X).
(iii) Fixf (X) = Fixg(X).

Proof. (i)⇒ (ii): It is obvious.
(ii) ⇒ (iii): Assume that f(X) = g(X). Let x ∈ Fixf (X). Then

x = f(x) ∈ f(X) = g(X). Hence x = g(y) for some y ∈ X. Now
g(x) = g(g(y)) = g2(y) = g(y) = x. Thus x ∈ Fixg(X). Therefore,
Fixf ⊆ Fixg(X). Similarly, we can obtain Fixg(X) ⊆ Fixf (X). Thus
Fixf (X) = Fixg(X).

(iii) ⇒ (i): Assume that Fixf (X) = Fixg(X). Let x ∈ X. Since
f(x) ∈ Fixf (X) = Fixg(X), we have g(f(x)) = f(x). Also, we obtain
g(x) ∈ Fixg(X) = Fixf (X). Hence we get f(g(x)) = g(x). Thus we
have

f(x) = g(f(x)) = (g ◦ f)(x) = (f ◦ g)(x) = f(g(x)) = g(x).

Therefore, f and g are equal in the sense of mappings. �

Let f be a multiplier of X. Define a Kerf by

Kerf = {x ∈ X | f(x) = 0}
for all x ∈ X.

Proposition 3.19. Let f be a multiplier of X. Then Kerf is a subal-
gebra of X.

Proof. Let f be a multiplier of X. Let x, y ∈ Kerf. Then f(x) = 0
and f(y) = 0. Hence we have f(x ∗ y) = f(x) ∗ y = 0 ∗ y = 0, and so
x ∗ y ∈ Kerf. Thus Kerf is a subalgebra of X. �
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Proposition 3.20. Let X be a commutative BCC-algebra. If y ∈ Kerf
and x ≤ y, then we have x ∈ Kerf.

Proof. Let f be a multiplier ofX. If y ∈ Kerf and x ≤ y. Then f(y) = 0
and x ∗ y = 0.

f(x) = f(x ∗ 0) = f(x ∗ (x ∗ y))

= f(y ∗ (y ∗ x)) = f(y) ∗ (y ∗ x) = 0 ∗ (y ∗ x)

= 0,

and so x ∈ Kerf. This completes the proof. �

Theorem 3.21. Let f be a multiplier of X and an endomorphism. Then
Kerd is an ideal of X.

Proof. Clearly, 0 ∈ Kerf. Let y ∈ Kerf and x ∗ y ∈ Kerf. Then we
have f(y) = f(x ∗ y) = 0, and so

0 = f(x ∗ y) = f(x) ∗ f(y) = f(x) ∗ 0 = f(x).

This implies x ∈ Kerf. This completes the proof. �

Definition 3.22. Let X be a BCC-algebra. A non-empty set I of X is
called a normal ideal if it satisfies the following conditions:

(i) 0 ∈ I,
(ii) x ∈ I and y ∈ X imply x ∗ y ∈ I.

Example 3.23. Let X = {0, 1, 2, 3} a set in which “∗” are defined by

∗ 0 1 2 3
0 0 0 0 0
1 1 0 1 0
2 2 2 0 0
3 3 3 1 0

It is easy to check that (X, ∗) is a BCC-algebra. Let I = {0, 2}. Then it
is easy to check that I is a normal ideal of a BCC-algebra X.

Theorem 3.24. Let f be a multiplier of a BCC-algebra X. For any
normal ideal I of X, both f(I) and f−1(I) are normal ideals of X.
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Proof. Clearly, 0 = f(0). Let x ∈ X and a ∈ f(I). Then a = f(s) for
some s ∈ I. Now a ∗ x = f(s) ∗ x = f(s ∗ x) ∈ f(I) because s ∗ x ∈ I.
Therefore f(I) is a normal ideal of X. Since I is a normal ideal of X,
we obtain f(0) = 0 ∈ I. Hence 0 = f−1(I). Let x ∈ X and a ∈ f−1(I).
Then f(a) ∈ I. Since I is a normal ideal, we get f(a ∗x) = f(a) ∗x ∈ I.
Hence a ∗ x ∈ f−1(I). Therefore f−1(I) is a normal ideal of X. �

Proposition 3.25. For any multiplier f of a BCC-algebra X, Kerf is
a normal ideal of X.

Proof. Clearly, 0 ∈ Kerf. Let a ∈ Kerf and x ∈ X. Then f(a ∗ x) =
f(a) ∗ x = 0 ∗ x = 0. Hence a ∗ x ∈ Kerf, which implies that Kerf is a
normal ideal of X. �

Lemma 3.26. Let f be a multiplier of a BCC-algebra X. Then Im(f) =
Fixf (X).

Proof. Let x ∈ Fixf (X). Then x = f(x) ∈ Im(f). Hence Fixf (X) ⊆
Im(f). Now let a ∈ Im(f). Then we get a = f(b) for some b ∈ X. Thus
f(a) = f(f(b)) = f(b) = a, which implies Im(f) ⊆ Fixf (X). Therefore,
Im(f) = Fixf (X). This completes the proof. �

Theorem 3.27. Let f be a multiplier of a BCC-algebra X. Then we
have

(i) Fixf (X) is a normal ideal of X.
(ii) Im(f) is a normal ideal of X.

Proof. (i) Since f(0) = 0, we have 0 ∈ Fixf (X). Let x ∈ X and
a ∈ Fixf (X). Then f(a) = a Now f(a ∗ x) = f(a) ∗ x = a ∗ x. Hence
a ∗ x ∈ Fixf (X). Therefore, Fixf (X) is a normal ideal of X.

(ii) Obviously, 0 = f(0). Let x ∈ X and a ∈ Im(f). Then a = f(b)
for some b ∈ X. Now a ∗ x = f(b) ∗ x = f(b ∗ x) ∈ f(X). Therefore,
Im(f) is a normal ideal of X. �
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