ON MULTIPLIERS OF BCC-ALGEBRAS

Kyung Ho Kim* and Hyo Jin Lim

Abstract

In this paper, we introduced the notion of multiplier of a BCC-algebra, and gave some properties of BCC-algebras. Also, we characterized kernels and normal ideals of multipliers on BCCalgebras.

1. Introduction

A BCK-algebra is an important class of logical algebras introduced by K. Iséki ([5]) and was extensively investigated by several researchers. The class of all BCK-algebras is a quasivariety. K. Iséki posed an interesting problem (solved by A. Wroński [10]) whether the class of BCKalgebras is a variety. In connection with this problem, Y. Komori ([7]) introduced a notion of BCC-algebras, and W. A. Dudek ([1, 2]) redefined the notion of BCC-algebras by using a dual form of the ordinary definition in the sense of Y. Komori. C. Prabpayak and U. LerrawatIn ([8]) introduced the derivation of BCC-algebra. In [9] a partial multiplier on a commutative semigroup (A, \cdot) has been introduced as a function F from a nonvoid subset D_{F} of A into A such that $F(x) \cdot y=x \cdot F(y)$ for all $x, y \in D_{F}$. In this paper, we introduce the notion of multiplier of a BCC-algebra, and give some properties of BCC-algebras. Also, we characterize Kernel of multipliers on BCC-algebras.

2. Preliminary

An algebra $X=(X, *, 0)$ of type $(2,0)$ is called a BCC-algebra if it satisfies the following axioms: For all $x, y, z \in X$,

[^0](1) $((x * y) *(z * y)) *(x * z)=0$,
(2) $x * x=0$,
(3) $0 * x=0$,
(4) $x * 0=x$,
(5) $x * y=0$ and $y * x=0$ imply $x=y$.

Note that $(x * y) * x=0$ from (1).
A subset S is subalgebra of X if $x * y \in S$ for all $x, y \in S$. Note that ([2]) a BCC-algebra is a BCK-algebra iff it satisfies the identity
(6) $(x * y) * z=(x * z) * y$ for all $x, y, z \in X$,
which holds in all BCK-algebras. Methods of construction of BCCalgebras from the given BCK-algebras are described in [2] and [3].

The class of all $B C C$-algebra is a quasivariety ([7]), but many subclasses of this quasivariety form variety ([2]). Also the quasivariety of all BCKalgebras has many well described subclasses which are varieties. On any $B C C$-algebra X (similarly, as in the case of $B C K$-algebras) one can define the natural order \leq putting
(7) $x \leq y$ if and only if $x * y=0$ for all $x, y \in X$,

It is not difficult to verify that this order is partial and 0 is its smallest element. Moreover, for all $x, y, z \in X$
(8) $(x * y) *(z * y) \leq x * z$,
(9) $x \leq y$ implies $x * z \leq y * z$ and $z * y \leq z * x$.

For elements x and y of a BCC-algebra X, we denote $x \wedge y=y *(y * x)$.
A BCC-algebra is said to be commutative if it satisfies for all $x, y \in X$,

$$
x *(x * y)=y *(y * x), \quad \text { i.e. }, \quad x \wedge y=y \wedge x .
$$

Let X be a BCC-algebra. A subset I of a BCC-algebra X is called an ideal if it satisfies
(1) $0 \in I$,
(2) If $y \in I$ and $x * y \in I$, then $x \in I$ for all $x, y \in X$.

3. Multipliers of BCC-algebras

In what follows, let X denote a BCC-algebra unless otherwise specified.

Definition 3.1. Let X be a BCC-algebra. A self-map f of X is called a multiplier if

$$
f(x * y)=f(x) * y
$$

for all $x, y \in X$.
Example 3.2. Let $X=\{0,1,2,3\}$ a set in which "*" are defined by

$$
\begin{array}{c|cccc}
* & 0 & 1 & 2 & 3 \\
\hline 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
2 & 2 & 1 & 0 & 0 \\
3 & 3 & 2 & 2 & 0
\end{array}
$$

It is easy to check that $(X, *)$ is a BCC-algebra. Define a map $f: X \rightarrow X$ by

$$
f(x)= \begin{cases}0 & \text { if } x=0,1,2 \\ 1 & \text { if } x=3\end{cases}
$$

Then it is easy to check that f is a multiplier of a BCC-algebra X.
Example 3.3. Let $X=\{0,1,2,3\}$ a set in which "*" are defined by

$$
\begin{array}{c|cccc}
* & 0 & 1 & 2 & 3 \\
\hline 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
2 & 2 & 1 & 0 & 1 \\
3 & 3 & 3 & 3 & 0
\end{array}
$$

It is easy to check that $(X, *)$ is a BCC-algebra. Define a map $f: X \rightarrow X$ by

$$
f(x)= \begin{cases}0 & \text { if } x=0,1,2 \\ 3 & \text { if } x=3\end{cases}
$$

Then it is easy to check that f is a multiplier of a BCC-algebra X.
Example 3.4. The identity mapping ϵ, the unit mapping $\iota: a \longmapsto 1$ are multipliers of X.

Proposition 3.5. Let f be a multiplier of X. Then we have $f(x * f(x))=$ 0 for all $x \in X$.

Proof. Let $x \in X$. Then $f(x * f(x))=f(x) * f(x)=0$. This completes the proof.

Definition 3.6. A self-map f of X is said to be regular if $f(0)=0$.

Proposition 3.7. Let f be a regular multiplier of X. Then the following identities hold.
(i) $f(x) \leq x$ for all $x \in X$.
(ii) $f(x * y) \leq f(x) * f(y)$ for all $x, y \in X$.

Proof. (i) For all $x \in X$, we have $0=f(0)=f(x * x)=f(x) * x$, that is, $f(x) \leq x$.
(ii) Since $f(y) \leq y$ for all $y \in X$, we have $f(x * y)=f(x) * y \leq$ $f(x) * f(y)$ by (9).

Definition 3.8. Let X be a BCC-algebra and f be a self-map of X. If $x \leq y$ implies $f(x) \leq f(y)$ for all $x, y \in X, f$ is said to be isotone.

Proposition 3.9. Let f be a regular multiplier of X. If f is an endomorphism on X, then f is isotone.

Proof. Let $x \leq y$. Then $x * y=0$ and $0=f(0)=f(x * y)=f(x) * f(y)$. Hence $f(x) \leq f(y)$. This completes the proof.

Proposition 3.10. Let f is a non-expansive map on a BCC-algebra X, i.e., $f(x) \leq x$ for all $x \in X$. Then $f(x) * y \leq x * f(y)$ for all $x, y \in X$.

Proof. Suppose that f is a non-expansive map on X and $x, y \in X$. Then $f(x) \leq x$ and $f(y) \leq y$. Hence $f(x) * y \leq x * y$ and $x * y \leq x * f(y)$ by (9). It follows that $f(x) * y \leq x * f(y)$.

Proposition 3.11. Let f be a multiplier of a BCC-algebra. Define $f^{2}(x)=f(f(x))$ for all $x \in X$. If $f^{2}=f$, then f is regular.

Proof. Since $0=x * x$ for all $x \in X$, we have $f(0)=f(f(0) * f(0))=$ $f^{2}(0) * f(0)=f(0) * f(0)=0$.

Let X be a BCC-algebra and f_{1}, f_{2} two self-maps. We define $f_{1} \circ f_{2}$: $X \rightarrow X$ by

$$
\left(f_{1} \circ f_{2}\right)(x)=f_{1}\left(f_{2}(x)\right)
$$

for all $x \in X$.

Proposition 3.12. Let X be a BCC-algebra and f_{1}, f_{2} two multipliers. Then $f_{1} \circ f_{2}$ is also a multiplier of X.

Proof. Let X be a BCC-algebra and f_{1}, f_{2} two multipliers. Then we have

$$
\begin{aligned}
\left(f_{1} \circ f_{2}\right)(a * b) & =f_{1}\left(f_{2}(a * b)\right) \\
& =\left(f_{1}\left(f_{2}(a) * b\right)\right) \\
& =f_{1}\left(f_{2}(a)\right) * b \\
& =\left(f_{1} \circ f_{2}\right)(a) * b
\end{aligned}
$$

for all $a, b \in X$. This completes the proof.
Let X be a BCC-algebra and f_{1}, f_{2} two self-maps. We define $\left(f_{1} \wedge\right.$ $\left.f_{2}\right)(x)$ by

$$
\left(f_{1} \wedge f_{2}\right)(x)=f_{1}(x) \wedge f_{2}(x)
$$

for all $x \in X$.
Proposition 3.13. Let X be a BCC-algebra and f_{1}, f_{2} two multipliers. Then $f_{1} \wedge f_{2}$ is also a multiplier of X.

Proof. Let X be a BCC-algebra and f_{1}, f_{2} two multipliers. Then we have

$$
\begin{aligned}
\left(f_{1} \wedge f_{2}\right)(a * b) & =f_{1}(a * b) \wedge f_{2}(a * b) \\
& =f_{1}(a) * b \wedge f_{2}(a) * b \\
& =f_{2}(a) * b *\left(\left(f_{2}(a) * b\right) *\left(f_{1}(a) * b\right)\right) \\
& =\left(f_{2}(a) * b\right) *\left(f_{2}(a) * f_{1}(a)\right) \\
& =\left(\left(f_{2}(a) *\left(f_{2}(a) * f_{1}(a)\right)\right) * b\right. \\
& =\left(f_{1}(a) \wedge f_{2}(a)\right) * b \\
& =\left(f_{1} \wedge f_{2}\right)(a) * b .
\end{aligned}
$$

for all $a, b \in X$. This completes the proof.
Let X_{1} and X_{2} be two BCC-algebras. Then $X_{1} \times X_{2}$ is also a BCCalgebra with respect to the point-wise operation given by

$$
(a, b) *(c, d)=(a * c, b * d)
$$

for all $a, c \in X_{1}$ and $b, d \in X_{2}$.

Proposition 3.14. Let X_{1} and X_{2} be two BCC-algebras. Define a map $f: X_{1} \times X_{2} \rightarrow X_{1} \times X_{2}$ by $f(x, y)=(x, 0)$ for all $(x, y) \in X_{1} \times X_{2}$. Then f is a multiplier of $X_{1} \times X_{2}$ with respect to the point-wise operation.

Proof. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X_{1} \times X_{2}$. The we have

$$
\begin{aligned}
\left(f\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right)\right) & =f\left(x_{1} * x_{2}, y_{1} * y_{2}\right) \\
& =\left(x_{1} * x_{2}, 0\right) \\
& =\left(x_{1} * x_{2}, 0 * y_{2}\right) \\
& =\left(x_{1}, 0\right) *\left(x_{2}, y_{2}\right) \\
& =f\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)
\end{aligned}
$$

Therefore f is a multiplier of the direct product $X_{1} \times X_{2}$.

Let f be a multiplier of X. Define a set $F i x_{f}(X)$ by

$$
\operatorname{Fix}_{f}(X):=\{x \in X \mid f(x)=x\}
$$

for all $x \in X$.

Proposition 3.15. Let f be a multiplier of X. If $x \in \operatorname{Fix}_{f}(X)$, then we have $(f \circ f)(x)=x$.

Proof. Let $x \in F i x_{f}(X)$. Then we have

$$
(f \circ f)(x)=f(f(x))=f(x)=x
$$

This completes the proof.

Proposition 3.16. Let f be a multiplier of a BCC-algebra X. Then $\operatorname{Fix}_{f}(X)$ is a subalgebra of X.

Proof. Let f be a multiplier of X and $x, y \in \operatorname{Fix}_{f}(X)$. Then we have $f(x)=x$ and $f(y)=y$, and so $f(x * y)=f(x) * y=x * y$. This implies $x * y \in \operatorname{Fix}_{f}(X)$. This completes the proof.

Proposition 3.17. Let X be a BCC-algebra and f be a multiplier of X. If $x \in X$ and $y \in \operatorname{Fix}_{f}(X)$, then $x \wedge y \in \operatorname{Fix}_{f}(X)$.

Proof. Let f be a multiplier and $y \in \operatorname{Fix}_{f}(X)$. Then we have $f(y)=y$, and so

$$
\begin{aligned}
f(x \wedge y) & =f(y *(y * x))=f(y) *(y * x) \\
& =y *(y * x))=x \wedge y
\end{aligned}
$$

This completes the proof.
Let us recall from [9] that the composition of two multipliers f and g of a BCC-algebra X is a multiplier of X where $(f \circ g)(x)=f(g(x))$ for all $x \in X$.

Theorem 3.18. Let f and g be two multipliers of X such that $f \circ g=$ $g \circ f$. Then the following conditions are equivalent.
(i) $f=g$.
(ii) $f(X)=g(X)$.
(iii) $\operatorname{Fix}_{f}(X)=\operatorname{Fix}_{g}(X)$.

Proof. (i) \Rightarrow (ii): It is obvious.
(ii) \Rightarrow (iii): Assume that $f(X)=g(X)$. Let $x \in \operatorname{Fix}_{f}(X)$. Then $x=f(x) \in f(X)=g(X)$. Hence $x=g(y)$ for some $y \in X$. Now $g(x)=g(g(y))=g^{2}(y)=g(y)=x$. Thus $x \in \operatorname{Fix}_{g}(X)$. Therefore, $F i x_{f} \subseteq F i x_{g}(X)$. Similarly, we can obtain $F i x_{g}(X) \subseteq F i x_{f}(X)$. Thus $\operatorname{Fix}_{f}(X)=\operatorname{Fix}_{g}(X)$.
(iii) \Rightarrow (i): Assume that $F i x_{f}(X)=F i x_{g}(X)$. Let $x \in X$. Since $f(x) \in F i x_{f}(X)=F i x_{g}(X)$, we have $g(f(x))=f(x)$. Also, we obtain $g(x) \in \operatorname{Fix}_{g}(X)=F i x_{f}(X)$. Hence we get $f(g(x))=g(x)$. Thus we have

$$
f(x)=g(f(x))=(g \circ f)(x)=(f \circ g)(x)=f(g(x))=g(x)
$$

Therefore, f and g are equal in the sense of mappings.
Let f be a multiplier of X. Define a $\operatorname{Ker} f$ by

$$
\operatorname{Ker} f=\{x \in X \mid f(x)=0\}
$$

for all $x \in X$.
Proposition 3.19. Let f be a multiplier of X. Then Kerf is a subalgebra of X.

Proof. Let f be a multiplier of X. Let $x, y \in \operatorname{Ker} f$. Then $f(x)=0$ and $f(y)=0$. Hence we have $f(x * y)=f(x) * y=0 * y=0$, and so $x * y \in \operatorname{Ker} f$. Thus Kerf is a subalgebra of X.

Proposition 3.20. Let X be a commutative BCC-algebra. If $y \in \operatorname{Kerf}$ and $x \leq y$, then we have $x \in \operatorname{Kerf}$.

Proof. Let f be a multiplier of X. If $y \in \operatorname{Ker} f$ and $x \leq y$. Then $f(y)=0$ and $x * y=0$.

$$
\begin{aligned}
f(x) & =f(x * 0)=f(x *(x * y)) \\
& =f(y *(y * x))=f(y) *(y * x)=0 *(y * x) \\
& =0
\end{aligned}
$$

and so $x \in \operatorname{Kerf}$. This completes the proof.

Theorem 3.21. Let f be a multiplier of X and an endomorphism. Then Kerd is an ideal of X.

Proof. Clearly, $0 \in \operatorname{Kerf}$. Let $y \in \operatorname{Kerf}$ and $x * y \in \operatorname{Kerf}$. Then we have $f(y)=f(x * y)=0$, and so

$$
0=f(x * y)=f(x) * f(y)=f(x) * 0=f(x)
$$

This implies $x \in \operatorname{Ker} f$. This completes the proof.

Definition 3.22. Let X be a BCC-algebra. A non-empty set I of X is called a normal ideal if it satisfies the following conditions:
(i) $0 \in I$,
(ii) $x \in I$ and $y \in X$ imply $x * y \in I$.

Example 3.23. Let $X=\{0,1,2,3\}$ a set in which"*" are defined by

$*$	0	1	2	3
0	0	0	0	0
1	1	0	1	0
2	2	2	0	0
3	3	3	1	0

It is easy to check that $(X, *)$ is a BCC-algebra. Let $I=\{0,2\}$. Then it is easy to check that I is a normal ideal of a BCC-algebra X.

Theorem 3.24. Let f be a multiplier of a BCC-algebra X. For any normal ideal I of X, both $f(I)$ and $f^{-1}(I)$ are normal ideals of X.

Proof. Clearly, $0=f(0)$. Let $x \in X$ and $a \in f(I)$. Then $a=f(s)$ for some $s \in I$. Now $a * x=f(s) * x=f(s * x) \in f(I)$ because $s * x \in I$. Therefore $f(I)$ is a normal ideal of X. Since I is a normal ideal of X, we obtain $f(0)=0 \in I$. Hence $0=f^{-1}(I)$. Let $x \in X$ and $a \in f^{-1}(I)$. Then $f(a) \in I$. Since I is a normal ideal, we get $f(a * x)=f(a) * x \in I$. Hence $a * x \in f^{-1}(I)$. Therefore $f^{-1}(I)$ is a normal ideal of X.

Proposition 3.25. For any multiplier f of a BCC-algebra $X, \operatorname{Ker} f$ is a normal ideal of X.

Proof. Clearly, $0 \in \operatorname{Ker} f$. Let $a \in \operatorname{Kerf}$ and $x \in X$. Then $f(a * x)=$ $f(a) * x=0 * x=0$. Hence $a * x \in \operatorname{Ker} f$, which implies that Kerf is a normal ideal of X.

Lemma 3.26. Let f be a multiplier of a BCC-algebra X. Then $\operatorname{Im}(f)=$ $\operatorname{Fix}_{f}(X)$.

Proof. Let $x \in \operatorname{Fix}_{f}(X)$. Then $x=f(x) \in \operatorname{Im}(f)$. Hence $\operatorname{Fix}_{f}(X) \subseteq$ $\operatorname{Im}(f)$. Now let $a \in \operatorname{Im}(f)$. Then we get $a=f(b)$ for some $b \in X$. Thus $f(a)=f(f(b))=f(b)=a$, which implies $\operatorname{Im}(f) \subseteq \operatorname{Fix}_{f}(X)$. Therefore, $\operatorname{Im}(f)=F i x_{f}(X)$. This completes the proof.

Theorem 3.27. Let f be a multiplier of a BCC-algebra X. Then we have
(i) $\operatorname{Fix}_{f}(X)$ is a normal ideal of X.
(ii) $\operatorname{Im}(f)$ is a normal ideal of X.

Proof. (i) Since $f(0)=0$, we have $0 \in \operatorname{Fix}_{f}(X)$. Let $x \in X$ and $a \in \operatorname{Fix}_{f}(X)$. Then $f(a)=a$ Now $f(a * x)=f(a) * x=a * x$. Hence $a * x \in \operatorname{Fix}_{f}(X)$. Therefore, $\operatorname{Fix}_{f}(X)$ is a normal ideal of X.
(ii) Obviously, $0=f(0)$. Let $x \in X$ and $a \in \operatorname{Im}(f)$. Then $a=f(b)$ for some $b \in X$. Now $a * x=f(b) * x=f(b * x) \in f(X)$. Therefore, $\operatorname{Im}(f)$ is a normal ideal of X.

References

[1] W. A. Dudek, The number of subalgebras of finite BCC-algebras, Bull. Inst. Math. Academia Sinica, 20 (1992), 137-150.
[2] W. A. Dudek, On proper BCC-algebras, Bull Inst. Math. Academia Sinica, 20 (1992), 137-150.
[3] W. A. Dudek, On construction of BCC-algebras, Selected papers on BCK- and BCI-algebras, 1 (1992), 93-96.
[4] W. A. Dudek H. X. Zhang, On ideals and congruences in BCC-algebras, Czechoslovak Math. J. 48(123) (1998), 21-29.
[5] K. Iséki, An algebra related with a propositional calculus, Pro. Japan Acad, 42 (1966), 26-29.
[6] K. Iséki, S. Tanaka, Ideal theory of BCK-algebras, Math. Japonica, 21 (1976), 351-366.
[7] Y. Komori, The class of BCC-algebras is not a variety, Math. Japonica, 29 (1984), 391-394.
[8] C. Prabpayak, U. Lerrawat, On Derivations of BCC-algebras, Kasetsart J. (Nat. Sci), 43 (2009), 398-401.
[9] R. Larsen, An Introduction to the Theory of Multipliers, Berlin: Springer-Verlag, 1971.
[10] A. Wroński, BCK-algebras do not form a variety, Math. Japonica, 28 (1983), 211-213.

Kyung Ho Kim
Department of Mathematics,
Korea National University of Transportation,
Chungju 380-702, Korea.
E-mail: ghkim@ut.ac.kr
Hyo Jin Lim
Department of Mathematics, Chungbuk National University, Cheongju 361-763, Korea.
E-mail: jellya@naver.com

[^0]: Received March 22, 2013. Accepted May 7, 2013.
 2010 Mathematics Subject Classification. 08A05, 08A30, 20 L 05.
 Key words and phrases. BCC-algebra, multiplier, isotone, $\operatorname{Fix}_{d}(X)$ normal ideal, regular.
 *Corresponding author

