Honam Mathematical J. **35** (2013), No. 2, pp. 201–210 http://dx.doi.org/10.5831/HMJ.2013.35.2.201

ON MULTIPLIERS OF BCC-ALGEBRAS

Kyung Ho Kim* and Hyo Jin Lim

Abstract. In this paper, we introduced the notion of multiplier of a BCC-algebra, and gave some properties of BCC-algebras. Also, we characterized kernels and normal ideals of multipliers on BCCalgebras.

1. Introduction

A BCK-algebra is an important class of logical algebras introduced by K. Iséki ([5]) and was extensively investigated by several researchers. The class of all BCK-algebras is a quasivariety. K. Iséki posed an interesting problem (solved by A. Wroński [10]) whether the class of BCKalgebras is a variety. In connection with this problem, Y. Komori ([7]) introduced a notion of BCC-algebras, and W. A. Dudek ([1, 2]) redefined the notion of BCC-algebras by using a dual form of the ordinary definition in the sense of Y. Komori. C. Prabpayak and U. LerrawatIn ([8]) introduced the derivation of BCC-algebra. In [9] a partial multiplier on a commutative semigroup (A, \cdot) has been introduced as a function Ffrom a nonvoid subset D_F of A into A such that $F(x) \cdot y = x \cdot F(y)$ for all $x, y \in D_F$. In this paper, we introduce the notion of multiplier of a BCC-algebra, and give some properties of BCC-algebras. Also, we characterize Kernel of multipliers on BCC-algebras.

2. Preliminary

An algebra X = (X, *, 0) of type (2,0) is called a *BCC-algebra* if it satisfies the following axioms: For all $x, y, z \in X$,

Received March 22, 2013. Accepted May 7, 2013.

²⁰¹⁰ Mathematics Subject Classification. $08A05,\,08A30,\,20L05.$

Key words and phrases. BCC-algebra, multiplier, isotone, $Fix_d(\boldsymbol{X})$ normal ideal, regular.

^{*}Corresponding author

Kyung Ho Kim and Hyo Jin Lim

- (1) ((x*y)*(z*y))*(x*z) = 0,
- (2) x * x = 0,
- (3) 0 * x = 0,
- (4) x * 0 = x,
- (5) x * y = 0 and y * x = 0 imply x = y.

Note that (x * y) * x = 0 from (1).

A subset S is subalgebra of X if $x * y \in S$ for all $x, y \in S$. Note that ([2]) a BCC-algebra is a BCK-algebra iff it satisfies the identity

(6) (x * y) * z = (x * z) * y for all $x, y, z \in X$,

which holds in all BCK-algebras. Methods of construction of BCC-algebras from the given BCK-algebras are described in [2] and [3].

The class of all *BCC*-algebra is a quasivariety ([7]), but many subclasses of this quasivariety form variety ([2]). Also the quasivariety of all BCKalgebras has many well described subclasses which are varieties. On any *BCC*-algebra X (similarly, as in the case of *BCK*-algebras) one can define the natural order \leq putting

(7) $x \leq y$ if and only if x * y = 0 for all $x, y \in X$,

It is not difficult to verify that this order is partial and 0 is its smallest element. Moreover, for all $x, y, z \in X$

(8)
$$(x * y) * (z * y) \le x * z,$$

(9) $x \le y$ implies $x * z \le y * z$ and $z * y \le z * x.$

For elements x and y of a BCC-algebra X, we denote $x \wedge y = y * (y * x)$.

A BCC-algebra is said to be *commutative* if it satisfies for all $x, y \in X$,

x * (x * y) = y * (y * x), i.e., $x \wedge y = y \wedge x$.

Let X be a BCC-algebra. A subset I of a BCC-algebra X is called an *ideal* if it satisfies

(1) $0 \in I$, (2) If $y \in I$ and $x * y \in I$, then $x \in I$ for all $x, y \in X$.

3. Multipliers of BCC-algebras

In what follows, let X denote a BCC-algebra unless otherwise specified.

Definition 3.1. Let X be a BCC-algebra. A self-map f of X is called a *multiplier* if

$$f(x * y) = f(x) * y$$

for all $x, y \in X$.

Example 3.2. Let $X = \{0, 1, 2, 3\}$ a set in which "*" are defined by

*	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	$0 \\ 0 \\ 1 \\ 2$	0	0
3	3	2	2	0

It is easy to check that (X, *) is a BCC-algebra. Define a map $f: X \to X$ by

$$f(x) = \begin{cases} 0 & \text{if } x = 0, 1, 2\\ 1 & \text{if } x = 3 \end{cases}$$

Then it is easy to check that f is a multiplier of a BCC-algebra X.

Example 3.3. Let $X = \{0, 1, 2, 3\}$ a set in which "*" are defined by

*	0	1	2	3
0	0	0	0	0
1	$\frac{1}{2}$	0	0	1
$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array} $	2	1	0	1
3	3	3	3	0

It is easy to check that (X, *) is a BCC-algebra. Define a map $f : X \to X$ by

$$f(x) = \begin{cases} 0 & \text{if } x = 0, 1, 2\\ 3 & \text{if } x = 3 \end{cases}$$

Then it is easy to check that f is a multiplier of a BCC-algebra X.

Example 3.4. The identity mapping ϵ , the unit mapping $\iota : a \mapsto 1$ are multipliers of X.

Proposition 3.5. Let f be a multiplier of X. Then we have f(x*f(x)) = 0 for all $x \in X$.

Proof. Let $x \in X$. Then f(x * f(x)) = f(x) * f(x) = 0. This completes the proof. \Box

Definition 3.6. A self-map f of X is said to be *regular* if f(0) = 0.

Proposition 3.7. Let f be a regular multiplier of X. Then the following identities hold.

(i) $f(x) \leq x$ for all $x \in X$.

(ii) $f(x * y) \le f(x) * f(y)$ for all $x, y \in X$.

Proof. (i) For all $x \in X$, we have 0 = f(0) = f(x * x) = f(x) * x, that is, $f(x) \leq x$.

(ii) Since $f(y) \leq y$ for all $y \in X$, we have $f(x * y) = f(x) * y \leq f(x) * f(y)$ by (9).

Definition 3.8. Let X be a BCC-algebra and f be a self-map of X. If $x \leq y$ implies $f(x) \leq f(y)$ for all $x, y \in X$, f is said to be *isotone*.

Proposition 3.9. Let f be a regular multiplier of X. If f is an endomorphism on X, then f is isotone.

Proof. Let $x \le y$. Then x * y = 0 and 0 = f(0) = f(x * y) = f(x) * f(y). Hence $f(x) \le f(y)$. This completes the proof.

Proposition 3.10. Let f is a non-expansive map on a BCC-algebra X, i.e., $f(x) \le x$ for all $x \in X$. Then $f(x) * y \le x * f(y)$ for all $x, y \in X$.

Proof. Suppose that f is a non-expansive map on X and $x, y \in X$. Then $f(x) \leq x$ and $f(y) \leq y$. Hence $f(x) * y \leq x * y$ and $x * y \leq x * f(y)$ by (9). It follows that $f(x) * y \leq x * f(y)$.

Proposition 3.11. Let f be a multiplier of a BCC-algebra. Define $f^2(x) = f(f(x))$ for all $x \in X$. If $f^2 = f$, then f is regular.

Proof. Since 0 = x * x for all $x \in X$, we have $f(0) = f(f(0) * f(0)) = f^2(0) * f(0) = f(0) * f(0) = 0$.

Let X be a BCC-algebra and f_1, f_2 two self-maps. We define $f_1 \circ f_2 : X \to X$ by

$$(f_1 \circ f_2)(x) = f_1(f_2(x))$$

for all $x \in X$.

Proposition 3.12. Let X be a BCC-algebra and f_1, f_2 two multipliers. Then $f_1 \circ f_2$ is also a multiplier of X.

Proof. Let X be a BCC-algebra and f_1, f_2 two multipliers. Then we have

$$(f_1 \circ f_2)(a * b) = f_1(f_2(a * b))$$

= $(f_1(f_2(a) * b))$
= $f_1(f_2(a)) * b$
= $(f_1 \circ f_2)(a) * b$

for all $a, b \in X$. This completes the proof.

Let X be a BCC-algebra and f_1, f_2 two self-maps. We define $(f_1 \wedge f_2)(x)$ by

$$(f_1 \wedge f_2)(x) = f_1(x) \wedge f_2(x)$$

for all $x \in X$.

Proposition 3.13. Let X be a BCC-algebra and f_1, f_2 two multipliers. Then $f_1 \wedge f_2$ is also a multiplier of X.

Proof. Let X be a BCC-algebra and f_1, f_2 two multipliers. Then we have

$$(f_1 \wedge f_2)(a * b) = f_1(a * b) \wedge f_2(a * b)$$

= $f_1(a) * b \wedge f_2(a) * b$
= $f_2(a) * b * ((f_2(a) * b) * (f_1(a) * b))$
= $(f_2(a) * b) * (f_2(a) * f_1(a))$
= $((f_2(a) * (f_2(a) * f_1(a))) * b$
= $(f_1(a) \wedge f_2(a)) * b$
= $(f_1 \wedge f_2)(a) * b.$

for all $a, b \in X$. This completes the proof.

Let X_1 and X_2 be two BCC-algebras. Then $X_1 \times X_2$ is also a BCCalgebra with respect to the point-wise operation given by

$$(a,b) * (c,d) = (a * c, b * d)$$

for all $a, c \in X_1$ and $b, d \in X_2$.

Proposition 3.14. Let X_1 and X_2 be two BCC-algebras. Define a map $f: X_1 \times X_2 \to X_1 \times X_2$ by f(x, y) = (x, 0) for all $(x, y) \in X_1 \times X_2$. Then f is a multiplier of $X_1 \times X_2$ with respect to the point-wise operation.

Proof. Let $(x_1, y_1), (x_2, y_2) \in X_1 \times X_2$. The we have

$$(f((x_1, y_1) * (x_2, y_2))) = f(x_1 * x_2, y_1 * y_2)$$

= $(x_1 * x_2, 0)$
= $(x_1 * x_2, 0 * y_2)$
= $(x_1, 0) * (x_2, y_2)$
= $f(x_1, y_1) * (x_2, y_2).$

Therefore f is a multiplier of the direct product $X_1 \times X_2$.

Let f be a multiplier of X. Define a set $Fix_f(X)$ by

$$Fix_f(X) := \{x \in X \mid f(x) = x\}$$

for all $x \in X$.

Proposition 3.15. Let f be a multiplier of X. If $x \in Fix_f(X)$, then we have $(f \circ f)(x) = x$.

Proof. Let $x \in Fix_f(X)$. Then we have

$$(f \circ f)(x) = f(f(x)) = f(x) = x.$$

This completes the proof.

Proposition 3.16. Let f be a multiplier of a BCC-algebra X. Then $Fix_f(X)$ is a subalgebra of X.

Proof. Let f be a multiplier of X and $x, y \in Fix_f(X)$. Then we have f(x) = x and f(y) = y, and so f(x * y) = f(x) * y = x * y. This implies $x * y \in Fix_f(X)$. This completes the proof. \Box

Proposition 3.17. Let X be a BCC-algebra and f be a multiplier of X. If $x \in X$ and $y \in Fix_f(X)$, then $x \wedge y \in Fix_f(X)$.

206

Proof. Let f be a multiplier and $y \in Fix_f(X)$. Then we have f(y) = y, and so

$$f(x \wedge y) = f(y * (y * x)) = f(y) * (y * x)$$

= y * (y * x)) = x \land y.
s the proof.

This completes the proof.

Let us recall from [9] that the composition of two multipliers f and g of a BCC-algebra X is a multiplier of X where $(f \circ g)(x) = f(g(x))$ for all $x \in X$.

Theorem 3.18. Let f and g be two multipliers of X such that $f \circ g = g \circ f$. Then the following conditions are equivalent.

 $\begin{array}{ll} (\mathrm{i}) \ f=g.\\ (\mathrm{ii}) \ f(X)=g(X).\\ (\mathrm{iii}) \ Fix_f(X)=Fix_g(X). \end{array}$

Proof. (i) \Rightarrow (ii): It is obvious.

(ii) \Rightarrow (iii): Assume that f(X) = g(X). Let $x \in Fix_f(X)$. Then $x = f(x) \in f(X) = g(X)$. Hence x = g(y) for some $y \in X$. Now $g(x) = g(g(y)) = g^2(y) = g(y) = x$. Thus $x \in Fix_g(X)$. Therefore, $Fix_f \subseteq Fix_g(X)$. Similarly, we can obtain $Fix_g(X) \subseteq Fix_f(X)$. Thus $Fix_f(X) = Fix_g(X)$.

(iii) \Rightarrow (i): Assume that $Fix_f(X) = Fix_g(X)$. Let $x \in X$. Since $f(x) \in Fix_f(X) = Fix_g(X)$, we have g(f(x)) = f(x). Also, we obtain $g(x) \in Fix_g(X) = Fix_f(X)$. Hence we get f(g(x)) = g(x). Thus we have

$$f(x) = g(f(x)) = (g \circ f)(x) = (f \circ g)(x) = f(g(x)) = g(x).$$

Therefore, f and g are equal in the sense of mappings.

Let f be a multiplier of X. Define a Kerf by

$$Kerf = \{x \in X \mid f(x) = 0\}$$

for all $x \in X$.

Proposition 3.19. Let f be a multiplier of X. Then Kerf is a subalgebra of X.

Proof. Let f be a multiplier of X. Let $x, y \in Kerf$. Then f(x) = 0 and f(y) = 0. Hence we have f(x * y) = f(x) * y = 0 * y = 0, and so $x * y \in Kerf$. Thus Kerf is a subalgebra of X.

Proposition 3.20. Let X be a commutative BCC-algebra. If $y \in Kerf$ and $x \leq y$, then we have $x \in Kerf$.

Proof. Let f be a multiplier of X. If $y \in Kerf$ and $x \leq y$. Then f(y) = 0 and x * y = 0.

$$f(x) = f(x * 0) = f(x * (x * y))$$

= $f(y * (y * x)) = f(y) * (y * x) = 0 * (y * x)$
= 0,

and so $x \in Kerf$. This completes the proof.

Theorem 3.21. Let f be a multiplier of X and an endomorphism. Then *Kerd* is an ideal of X.

Proof. Clearly, $0 \in Kerf$. Let $y \in Kerf$ and $x * y \in Kerf$. Then we have f(y) = f(x * y) = 0, and so

$$0 = f(x * y) = f(x) * f(y) = f(x) * 0 = f(x).$$

This implies $x \in Kerf$. This completes the proof.

Definition 3.22. Let X be a BCC-algebra. A non-empty set I of X is called a *normal ideal* if it satisfies the following conditions:

(i) $0 \in I$, (ii) $x \in I$ and $y \in X$ imply $x * y \in I$.

Example 3.23. Let $X = \{0, 1, 2, 3\}$ a set in which "*" are defined by

*	0	1	2	3
0	0	0	0	0
1	1	0	1	0
2	2	2	0	0
3	$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array}$	3	1	0

It is easy to check that (X, *) is a BCC-algebra. Let $I = \{0, 2\}$. Then it is easy to check that I is a normal ideal of a BCC-algebra X.

Theorem 3.24. Let f be a multiplier of a BCC-algebra X. For any normal ideal I of X, both f(I) and $f^{-1}(I)$ are normal ideals of X.

208

Proof. Clearly, 0 = f(0). Let $x \in X$ and $a \in f(I)$. Then a = f(s) for some $s \in I$. Now $a * x = f(s) * x = f(s * x) \in f(I)$ because $s * x \in I$. Therefore f(I) is a normal ideal of X. Since I is a normal ideal of X, we obtain $f(0) = 0 \in I$. Hence $0 = f^{-1}(I)$. Let $x \in X$ and $a \in f^{-1}(I)$. Then $f(a) \in I$. Since I is a normal ideal, we get $f(a * x) = f(a) * x \in I$. Hence $a * x \in f^{-1}(I)$. Therefore $f^{-1}(I)$ is a normal ideal of X. \Box

Proposition 3.25. For any multiplier f of a BCC-algebra X, Kerf is a normal ideal of X.

Proof. Clearly, $0 \in Kerf$. Let $a \in Kerf$ and $x \in X$. Then f(a * x) = f(a) * x = 0 * x = 0. Hence $a * x \in Kerf$, which implies that Kerf is a normal ideal of X.

Lemma 3.26. Let f be a multiplier of a BCC-algebra X. Then $Im(f) = Fix_f(X)$.

Proof. Let $x \in Fix_f(X)$. Then $x = f(x) \in Im(f)$. Hence $Fix_f(X) \subseteq Im(f)$. Now let $a \in Im(f)$. Then we get a = f(b) for some $b \in X$. Thus f(a) = f(f(b)) = f(b) = a, which implies $Im(f) \subseteq Fix_f(X)$. Therefore, $Im(f) = Fix_f(X)$. This completes the proof. \Box

Theorem 3.27. Let f be a multiplier of a BCC-algebra X. Then we have

- (i) $Fix_f(X)$ is a normal ideal of X.
- (ii) Im(f) is a normal ideal of X.

Proof. (i) Since f(0) = 0, we have $0 \in Fix_f(X)$. Let $x \in X$ and $a \in Fix_f(X)$. Then f(a) = a Now f(a * x) = f(a) * x = a * x. Hence $a * x \in Fix_f(X)$. Therefore, $Fix_f(X)$ is a normal ideal of X.

(ii) Obviously, 0 = f(0). Let $x \in X$ and $a \in Im(f)$. Then a = f(b) for some $b \in X$. Now $a * x = f(b) * x = f(b * x) \in f(X)$. Therefore, Im(f) is a normal ideal of X.

References

- W. A. Dudek, The number of subalgebras of finite BCC-algebras, Bull. Inst. Math. Academia Sinica, 20 (1992), 137-150.
- [2] W. A. Dudek, On proper BCC-algebras, Bull Inst. Math. Academia Sinica, 20 (1992), 137-150.

Kyung Ho Kim and Hyo Jin Lim

- [3] W. A. Dudek, On construction of BCC-algebras, Selected papers on BCK- and BCI-algebras, 1 (1992), 93-96.
- [4] W. A. Dudek H. X. Zhang, On ideals and congruences in BCC-algebras, Czechoslovak Math. J. 48(123) (1998), 21-29.
- [5] K. Iséki, An algebra related with a propositional calculus, Pro. Japan Acad, 42 (1966), 26-29.
- [6] K. Iséki, S. Tanaka, Ideal theory of BCK-algebras, Math. Japonica, 21 (1976), 351-366.
- [7] Y. Komori, The class of BCC-algebras is not a variety, Math. Japonica, 29 (1984), 391-394.
- [8] C. Prabpayak, U. Lerrawat, On Derivations of BCC-algebras, Kasetsart J. (Nat. Sci), 43 (2009), 398-401.
- [9] R. Larsen, An Introduction to the Theory of Multipliers, Berlin: Springer-Verlag, 1971.
- [10] A. Wroński, BCK-algebras do not form a variety, Math. Japonica, 28 (1983), 211-213.

Kyung Ho Kim Department of Mathematics, Korea National University of Transportation, Chungju 380-702, Korea. E-mail: ghkim@ut.ac.kr

Hyo Jin Lim Department of Mathematics, Chungbuk National University, Cheongju 361-763, Korea. E-mail: jellya@naver.com