DOI QR코드

DOI QR Code

Applications of NMR spectroscopy based metabolomics: a review

  • Yoon, Dahye (Department of Chemistry, Pusan National University) ;
  • Lee, Minji (Department of Chemistry, Pusan National University) ;
  • Kim, Siwon (Department of Chemistry, Pusan National University) ;
  • Kim, Suhkmann (Department of Chemistry, Pusan National University)
  • Received : 2013.05.31
  • Accepted : 2013.06.10
  • Published : 2013.06.20

Abstract

Metabolomics is the study which detects the changes of metabolites level. Metabolomics is a terminal view of the biological system. The end products of the metabolism, metabolites, reflect the responses to external environment. Therefore metabolomics gives the additional information about understanding the metabolic pathways. These metabolites can be used as biomarkers that indicate the disease or external stresses such as exposure to toxicant. Many kinds of biological samples are used in metabolomics, for example, cell, tissue, and bio fluids. NMR spectroscopy is one of the tools of metabolomics. NMR data are analyzed by multivariate statistical analysis and target profiling technique. Recently, NMR-based metabolomics is a growing field in various studies such as disease diagnosis, forensic science, and toxicity assessment.

Keywords

References

  1. A. Roux, D. Lison, C. Junot, J. Heilier, Clinical Biochemistry. 44, 119. (2011). https://doi.org/10.1016/j.clinbiochem.2010.08.016
  2. R.D. Beger, J. Sun, L.K. Schnackenberg, Toxicol Appl Pharmacol. 243,154. (2010). https://doi.org/10.1016/j.taap.2009.11.019
  3. J.K. Nicholson, J.C. Lindon, E. Holmes, Xenobiotica. 29, 1189.(1999).
  4. D.A. Bennett, M.D. Waters, Environ Health Perspect. 108, 907. (2000). https://doi.org/10.1289/ehp.00108907
  5. Biomarkers Definitions Working Group, Clin Pharmacol Ther. 69, 89. (2001). https://doi.org/10.1067/mcp.2001.113989
  6. J.A. Timbrell, Toxicology. 129, 1. (1998). https://doi.org/10.1016/S0300-483X(98)00058-4
  7. J.K. Nicholson, J. Connelly, J.C. Lindon, E. Holmes, Nat. Rev. Drug Discov. 1, 123. (2002).
  8. A. Zhang, H. Sun, P. Wang, Y. Han, X. Wang, JOURNAL OF PROTEOMICS. 75, 1079. (2012). https://doi.org/10.1016/j.jprot.2011.10.027
  9. J.K. Nicholson, J.C. Lindon, Nature. 455, 1054. (2008). https://doi.org/10.1038/4551054a
  10. H. Wang, V.K. Tso, C.M. Slupsky, R.N. Fedorak, Future Oncol. 6, 1395. (2010). https://doi.org/10.2217/fon.10.107
  11. R. Madsena, T. Lundstedtc, J. Trygga, Analytica Chimica Acta. 659, 23. (2010). https://doi.org/10.1016/j.aca.2009.11.042
  12. O.A.H. Jones, D.J. Spurgeon, C. Svendsen, J.L. Griffin, Chemosphere. 71, 601. (2008). https://doi.org/10.1016/j.chemosphere.2007.08.056
  13. G.Sudama, J. Zhang, J. Isbister, J.D. Willett, Metabolomics. 9, 189. (2013). https://doi.org/10.1007/s11306-012-0438-0
  14. R.Tyagi, P. Rana, M. Gupta, A. R. Khan, M. M. Devi, D. Bhatnagar, R. Roy, R.P. Tripathi, S. Khushu, Metabolomics. 8, 940. (2012). https://doi.org/10.1007/s11306-011-0390-4
  15. R.D. Beger, T. Colatsky, Metabolomics. 8, 2. (2012). https://doi.org/10.1007/s11306-011-0342-z
  16. A. Zhang, H. Sun, X. Wang, Anal Bioanal Chem. 404, 1239. (2012). https://doi.org/10.1007/s00216-012-6117-1
  17. J.G. Bundy, M.P. Davey, M.R. Viant, Metabolomics. 5, 3.(2009). https://doi.org/10.1007/s11306-008-0152-0
  18. S.C. Gates, C.C. Sweeley, Clin. Chem. 24, 1663. (1978).
  19. S. Kim, Journal of the Korean Magnetic Resonance Society. 13, 1. (2009). https://doi.org/10.6564/JKMRS.2009.13.1.001
  20. J.L. Spratlin, N. J. Serkova, S. G. Eckhardt, Clin Cancer Res. 15, 431. (2009). https://doi.org/10.1158/1078-0432.CCR-08-1059
  21. J.L. Griffin, J.P. Shockcor, Nat Rev Cancer. 4, 551. (2004). https://doi.org/10.1038/nrc1390
  22. A.M. Emwas, R.M. Salek, J.L. Griffin, J. Merzaban, Metabolomics. DOI 10.1007/s11306-013-0524-y
  23. S. Rehman, Molecular Biosystems. 8, 2274. (2012). https://doi.org/10.1039/c2mb25173f
  24. A.E.S.I. Ahmed, Journal of Applied Polymer Science. 119, 709. (2011). https://doi.org/10.1002/app.32731
  25. L. Corte, P. Rellini, L. Roscini, F. Fatichenti, G. Cardinali, Analytica Chimica Acta. 659, 258. (2010). https://doi.org/10.1016/j.aca.2009.11.035
  26. J.K. Nicholson, I.D. Wilson, Progress in Nuclear Magnetic Resonance Spectroscopy. 21, 449. (1989). https://doi.org/10.1016/0079-6565(89)80008-1
  27. D. G. Robertson, TOXICOLOGICAL SCIENCES. 85, 809, (2005). https://doi.org/10.1093/toxsci/kfi102
  28. R.S. Plumb, C.L. Stumpf, M.V. Gorenstein, J.M. Castro-Perez, G.J. Dear, M. Anthony, B.C. Sweatman, S.C. Connor, J.N. Haselden, Mass Spectrom. 16, 1991. (2002).
  29. N.V. Reo, Drug Chem. Toxicol. 25, 375. (2002). https://doi.org/10.1081/DCT-120014789
  30. D. S. Wishart, Trends in Analytical Chemistry. 27, 228. (2008). https://doi.org/10.1016/j.trac.2007.12.001
  31. D.M. Wilson, A.L. Burlingame, Biochem. Biophys. Res. Commun. 56, 828. (1974). https://doi.org/10.1016/0006-291X(74)90680-9
  32. R.G. Shulman, D.L. Rothman, Annu. Rev. Physiol. 65, 401. (2003). https://doi.org/10.1146/annurev.physiol.65.092101.142131
  33. M.W. Weiner, H. Hetherington, B. Hubesch, G. Karczmar, B. Massie, A. Maudsley, D.J. Meyerhoff, D. Sappey-Marinier, S. Schaefer, D.B. Twieg, NMR Biomed. 2, 290. (1989). https://doi.org/10.1002/nbm.1940020519
  34. J.K. Nicholson, I.D. Wilson, Nat. Rev. Drug Discov. 2, 668. (2003). https://doi.org/10.1038/nrd1157
  35. J. Trygg, E. Holmes, T. Lundstedt, J. Proteome Res. 6, 469. (2007). https://doi.org/10.1021/pr060594q
  36. H. Serrai, L. Nadal, G. Leray, B. Leroy, B. Delplanque, J.D. de Certaines, NMR Biomed. 11, 273. (1998). https://doi.org/10.1002/(SICI)1099-1492(199810)11:6<273::AID-NBM523>3.0.CO;2-J
  37. M. Ala-Korpela, N. Lankinen, A. Salminen, T. Suna, P. Soininen, R. Laatikainen, P. Ingman, M. Jauhiainen, M.R. Taskinen, K. Heberger, K. Kaski, Atherosclerosis. 190, 352. (2007). https://doi.org/10.1016/j.atherosclerosis.2006.04.020
  38. J.R. McNamara, G.R. Warnick, G.R. Cooper, Clin. Chim. Acta. 369, 158. (2006). https://doi.org/10.1016/j.cca.2006.02.041
  39. S.W. Provencher, Magn. Reson. Med. 30, 672. (1993). https://doi.org/10.1002/mrm.1910300604
  40. B.C. Sweatman, R.D. Farrant, E. Holmes, F.Y. Ghauri, J.K. Nicholson, J.C. Lindon, J. Pharm. Biomed. Anal. 11, 651. (1993). https://doi.org/10.1016/0731-7085(93)80171-V
  41. H.E. Kim, Y.H. Choi, J.S. Park, H.S. Kim, J.H. Jeon, M.S. Heu, D.S. Shin, J.H. Lee, Journal of the Korean Magnetic Resonance Society. 16, 91. (2012).
  42. Y.K. Chae1, W. Y. Kang, S. H. Kim, J. E. Joo, J. K. Han, B. W. Hong , Journal of the Korean Magnetic Resonance Society. 14, 28. (2010). https://doi.org/10.6564/JKMRS.2010.14.1.028
  43. S. Kim, S. Lee, Y. H. Maeng, W. Y. Chang, J. W. Hyun, S. Kim, Bull. Korean Chem. Soc. 34, 1467 (2013). https://doi.org/10.5012/bkcs.2013.34.5.1467

Cited by

  1. Meeting report: The biology of genomes and proteomes vol.37, pp.7, 2015, https://doi.org/10.1007/s13258-015-0305-2
  2. Toxicological Assessment of Microcystin-LR to Zebrafish (Danio rerio ) Using Metabolomics vol.38, pp.4, 2017, https://doi.org/10.1002/bkcs.11112
  3. H-NMR metabolomics analysis of nutritional components from two kinds of freshwater fish brain extracts vol.8, pp.35, 2018, https://doi.org/10.1039/C8RA02311E