Morphological Characteristics of Granular Sludge in dPAO SBR

dPAO SBR 입상슬러지의 형태학적 특성

  • Yoo, Tae Uk (Department of Environmental Engineering, Korea University) ;
  • Lee, Hansaem (Department of Environmental Engineering, Korea University) ;
  • Yun, Geumhee (Department of Environmental Engineering, Korea University) ;
  • Yun, Zuwhan (Department of Environmental Engineering, Korea University)
  • 유태욱 (고려대학교 대학원 환경공학과) ;
  • 이한샘 (고려대학교 대학원 환경공학과) ;
  • 윤금희 (고려대학교 대학원 환경공학과) ;
  • 윤주환 (고려대학교 대학원 환경공학과)
  • Published : 2013.07.30

Abstract

The morphological characteristics of granules, which were generated in lab-scale sequencing batch reactor (SBR) for simultaneous nitrogen and phosphorus removal with denitrifying phosphorus accumulating organism (dPAO) were identified. Granular sludge was fully developed in the anaerobic-anoxic (An-Ax) SBR after 180 days of SBR operation. The average diameter of granular sludge was 2.2 mm and rod-type organisms dominated in the granules. In addition, about 1.0 mm of white precipitate was observed in the core of the granule, and the material was confirmed that it is very similar to hydroxyapatite $(HAP;\;Ca_5(PO_4)_3(OH))$ by X-ray diffraction) analysis.

Keywords

References

  1. Adav, S. S., Lee, D. J., and Lai, J. Y. (2007). Effect of Aeration Intensity on Formation of Phenol-fed Aerobic Granules and Extracellular Polymeric Substances, Applied Microbiology and Biotechnology, 77, pp. 175-182. https://doi.org/10.1007/s00253-007-1125-3
  2. American Public Health Association, American Water Works Association and Water Environment Federation (APHA, AWWA and WEF). (2005). Standard Methods for the Examination of Water and Wastewater, 21st Eds., Washington DC, USA.
  3. Angela, M., Beatrice, B., and Mathieu, S. (2011). Biologically Induced Phosphorus Precipitation in Aerobic Granular Sludge Process, Water Research, 45, pp. 3776-3786. https://doi.org/10.1016/j.watres.2011.04.031
  4. Angela, M., Mathieu, P., Beatrice, B., and Mathieu, S. (2012). Parameters Influencing Calcium Phosphate Precipitation in Granular Sludge Sequencing Batch Reactor, Chemical Engineering Science, 77, pp. 165-175. https://doi.org/10.1016/j.ces.2012.01.009
  5. Beun, J. J., Hendriks, A., and Van Loosdrecht, M. C. M. (1999). Aerobic Granulation in a Sequencing Batch Reactor, Water Research, 33(10), pp. 2283-2290. https://doi.org/10.1016/S0043-1354(98)00463-1
  6. Coma, M., Puig, S., Balaguer, M. D., and Colprim, J. (2010). The Role of Nitrate and Nitrite in a Granular Sludge Process Treating Low-strength Wastewater, Chemical Engineering Journal, 164, pp. 208-213. https://doi.org/10.1016/j.cej.2010.08.063
  7. Coma, M., Verawaty, M., Pijuan, M., Yuan, Z., and Bond, P. L. (2012). Enhancing Aerobic Granulation for Biological Nutrient Removal from Domestic Wastewater, Bioresource Technology, 103, pp. 101-108. https://doi.org/10.1016/j.biortech.2011.10.014
  8. de Kreuk, M. K. and van Loosdrecht, M. C. M. (2006). Formation of Aerobic Granules with Domestic Sewage, Journal of Environmental Engineering, 132, pp. 694-697. https://doi.org/10.1061/(ASCE)0733-9372(2006)132:6(694)
  9. Dickson, J. S and Frank, J. F. (1993). Bacterial Starvation Stress and Contamination of Beef, Food Microbiology, 10, pp. 215-222. https://doi.org/10.1006/fmic.1993.1023
  10. Frolund, B.. Palmgren, R., Keiding, K., and Nielsen, P. H. (1996). Extraction of Extracelluar Polymers from Activated Sludge using a Cation Exchange Resin, Water Research, 30, pp. 1749-1758. https://doi.org/10.1016/0043-1354(95)00323-1
  11. Gao, D., Liu, L., Liang, H., and Wu, W. M. (2011). Comparison of Four Enhancement Strategies for Aerobic Granulation in Sequencing Batch Reactors, Journal of Hazardous Materials, 186, pp. 320-327. https://doi.org/10.1016/j.jhazmat.2010.11.006
  12. Han, J. H. (2010). Efficient Implementation of BNR Process using dPAO, Doctorate Thesis, Korea University, Seoul, Korea. pp. 32-37. [Korean Literature]
  13. Jang, H. L. (2002). Characterization of Aerobic Granular Sludge in SBR with High Loading Condition, Master's Thesis, Korea University, Seoul, Korea. pp. 31-35. [Korean Literature]
  14. Jiang, H. L., Tay, J. H., Liu, Y., and Tay, S. T. L. (2003). $Ca^{2+}$ Augmentation for Enhancement of Aerobically Grown Microbial Granules in Sludge Blanket Reactors, Biotechnology Letters, 25, pp. 95-99. https://doi.org/10.1023/A:1021967914544
  15. Kjelleberg, S. and Hermansson, M. (1984). Starvation Induced Effects on Bacterial Surface Characteristics, Applied and Environmental Microbiology, 48, pp. 497-503.
  16. Letitinga, G., van Velsen, A. F. M., Hosma, S. W., de Zeeuw, W., and Klapwijk, A. (1980). Use of the Upflow Sludge Blanket (USB) Reactor Concept for Biological Wastewater Treatment, Especially for Anaerobic Treatment, Biotechnology and Bioengineering, 22(4), pp. 699-734. https://doi.org/10.1002/bit.260220402
  17. Li, A., Li, X., and Yu, H. (2011). Effect of the Food to Microorganism (F/M) Ratio on the Formation and Size of Aerobic Sludge Granule, Process Biochemistry, 46(12), pp. 2269-2276. https://doi.org/10.1016/j.procbio.2011.09.007
  18. Li, X. M., Liu, Q. Q., Yang, Q., Guo, L., Zeng, G. M., Hu, J. M., and Zheng, W. (2009). Enhanced Aerobic Sludge Granulation in Sequencing Batch Reactor by $Mg^{2+}$ Augmentation, Bioresource Technology, 100, pp. 64-67. https://doi.org/10.1016/j.biortech.2008.06.015
  19. Liu, T. and Tay, J. H. (2004). State of the Art of Biogranulation Technology for Wastewater Treatment, Biotechnology Advances, 22(7), pp. 533-563. https://doi.org/10.1016/j.biotechadv.2004.05.001
  20. Liu, Y. and Tay, J. H. (2002). The Essential Role of Hydrodynamic Shear Force in the Formation of Biofilm and Granular Sludge, Water Research, 36, pp. 1653-1665. https://doi.org/10.1016/S0043-1354(01)00379-7
  21. Liu, Y. Q., Liu, Y., and Tay, J. H. (2004). The Effects of Extracellular Polymeric Substances on the Formation and Stability of Biogranules, Applied Microbiology and Biotechnology, 65(2), pp. 143-148.
  22. Liu, Y. Q., Moy, B. Y. P., and Tay, J. H. (2007). COD Removal and Nitrification of Low-strength Domestic Wastewater in Aerobic Granular Sludge Sequencing Batch Reactors, Enzyme and Microbial Technology, 42(1), pp. 23-28. https://doi.org/10.1016/j.enzmictec.2007.07.020
  23. Liu, Y. Q. and Tay, J. H. (2008). Influence of Starvation Time on Formation and Stability of Aerobic Granules in Sequencing Batch Reactors, Bioresource Technology, 99, pp. 980-985. https://doi.org/10.1016/j.biortech.2007.03.011
  24. McKinney, R. E. (1956). Biological flocculation In: Biological Treatment of sewage and Industrial waste, Reinhold, New York, 1, pp. 88-117.
  25. McSwain, B. S., Irvine, R. L., Hausner, M., and Wilderer, P. A. (2005). Composition and Distribution of Extracellular Polymeric Substances in Aerobic Flocs and Granular Sludge, Applied and Environmental Microbiology, 71, pp. 1051-1057. https://doi.org/10.1128/AEM.71.2.1051-1057.2005
  26. McSwain, B. S., Irvine, R. L., and Wilderer, P. A. (2004). The Influence of Settling Time on the Formation of Aerobic Granules, Water Science and Technology, 50(10), pp. 195-202.
  27. Mishima, K. and Nakamura, M. (1991). Self Immobilization of Aerobic Activated Sludge - a Pilot Study of the Aerobic Upflow Sludge Blanket Process in Municipal Sewage Treatment, Water Science and Technology, 23, pp. 981-990.
  28. Morgenroth, E., Sherden, T., van Loosdrecht, M. C. M., Heignen, J. J., and Wilderer, P. A. (1997). Aerobic Granulation in a Sequencing Batch Reactor, Water Research, 31, pp. 3191-3194. https://doi.org/10.1016/S0043-1354(97)00216-9
  29. Peng, D., Bernet, N., Delgenes, J. P., and Moletta, R. (1999). Aerobic Granular Sludge - a case report, Water Research, 33(3), pp. 890-893. https://doi.org/10.1016/S0043-1354(98)00443-6
  30. Pevere, A., Guibaud, G., van Hullebusch, E. D., Boughzala, W., and Lens, P. N. L. (2007). Effect of $Na^{2+}$ and $Ca^{2+}$ on the Aggregation Properties of Sieved Anaerobic Granular Sludge, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 306(1-3), pp. 142-149. https://doi.org/10.1016/j.colsurfa.2007.04.033
  31. Sheng, G. P., Yu, H. Q., and Li, X. Y. (2010). Extracellular Polymeric Substances (EPS) of Microbial Aggregates in Biological Wastewater Treatment Systems: A review, Biotechnology Advances, 28, pp. 882-894. https://doi.org/10.1016/j.biotechadv.2010.08.001
  32. Sun, F. Y., Yang, C. Y., Li, J. Y., and Yang, Y. J. (2006). Influence of Different Substrates on the Formation and Characteristics of Aerobic Granules in Sequencing Batch Reactors, Journal of Environmental Sciences, 18(5), pp. 864-871. https://doi.org/10.1016/S1001-0742(06)60006-5
  33. Tay, J. H., Liu, Q. S., and Liu, Y. (2001). The Effects of Shear Force on the Formation, Structure and Metabolism of Aerobic Granules, Applied and Environmental Microbiology, 57, pp. 227-233.
  34. Tsuneda, S., Nagano, T., Hoshino, T., Ejiri, Y., Noda, N., and Hirata, A. (2003). Characterization of Nitrifying Granules Produced in an Aerobic Upflow Fluidized Bed Reactor, Water Research, 37, pp. 4965-4973. https://doi.org/10.1016/j.watres.2003.08.017
  35. Wan, J. and Mathieu, S. (2009). Possible Role of Denitrification an Aerobic Granular Sludge Formation in Sequencing Batch Reactor, Chemosphere, 75, pp. 220-227. https://doi.org/10.1016/j.chemosphere.2008.11.069
  36. Wang, Z. W., Liu, Y., and Tay, J. H. (2006). The Role of SBR Mixed Liquor Volume Exchange Ratio in Aerobic Granulation, Chemosphere, 62, pp. 767-771. https://doi.org/10.1016/j.chemosphere.2005.04.081
  37. Weng, C. N. and Molof, A. H. (1974). Nitrification in the Biological Fixed Film Rotating Disk System, Journal of Water Pollution Control Federation, 46, pp. 1674-1685.
  38. Winkler, M. K. H., Kleerebezem, R., Khunjar, W. O., de Bruin, B., and van Loosdrecht, M. C. M. (2012). Evaluating the Solid Retention Time of Bacteria in Flocculent and Granular Sludge, Water Research, 46(16), pp. 4973-4980. https://doi.org/10.1016/j.watres.2012.06.027
  39. Wu, C. Y., Peng, Y. Z., Wang, S. Y., and Ma, Y. (2010). Enhanced Biological Phosphorus Removal by Granular Sludge: From Macro - to Micro-scale, Water Research, 44, pp. 807-814. https://doi.org/10.1016/j.watres.2009.10.028
  40. Yoo, T. U. (2012). Characteristics of Granular Sludge in Simultaneous Nitrogen and Phosphorus Removal System, Master's Thesis, Korea University, Seoul, Korea. pp. 40-43. [Korean Literature]
  41. Yun, Z., Choi, E., Park, Y., Lee, H., Jeong, H., Kim, K., Lee, H., Rho, K., and Gil, K. (2000). Extracellular Polymeric Substances in Relations to Nutrient Removal from SBBR, Proc. IWA Specialty Conference on Extracellular Polymeric Substances: The construction material of Biofilm, Sept. 18-22, Mulheim, Germany.
  42. Zhang, B., Ji, M., Qiu, Z., Liu, H., Wang, J., and Li, J. (2011). Microbial Population Dynamics during Sludge Granulation in an Anaerobic-aerobic Biological Phosphorus Removal System, Bioresource Technology, 102, pp. 2474-2480. https://doi.org/10.1016/j.biortech.2010.11.017
  43. Zhu, L., Lv, M., Dai, X., Yu, Y., Qi, H., and Xu, X. (2012). Role and Significance of Extracellular Polymeric Substances on the Property of Aerobic Granule, Bioresource Technology, 107, pp. 46-54. https://doi.org/10.1016/j.biortech.2011.12.008