금강모치(Rhynchocypris kumgangensis)에서 heat shock protein 70의 클로닝과 수온상승에 의한 발현 변화 분석

Cloning of Heat Shock Protein 70 and Its Expression Profile under an Increase of Water Temperature in Rhynchocypris kumgangensis

  • 임지수 (경기대학교 생명과학과) ;
  • 길성호 (경기대학교 생명과학과)
  • Im, Jisu (Department of Life Science, Kyonggi University) ;
  • Ghil, Sungho (Department of Life Science, Kyonggi University)
  • 발행 : 2013.03.30

초록

Water temperature is key factor influencing growth and reproduction of fish and its increase give rise to various physiological changes including gene expression. Heat shock protein (Hsp), one of the molecular chaperones, is highly conserved throughout evolution and its expression is induced by various stressors such as temperature, oxidative, physical and chemical stresses. Here, we isolated partial cDNA clones encoding 70-kDa Hsp (Hsp70) and $\beta$-actin using reverse transcriptase-PCR (RT-PCR) from gut of Rhynchocypris kumgangensis, a Korean indigenous species and cold-water fish, and investigated expression profiles of Hsp70 under an increase of water temperature using $\beta$-actin as an internal control for RT-PCR. Cloned Hsp70 cDNA of R. kumgangensis showed homology to Ctenopharyngodon idella (96%), Hypophthalmichthys molitrix (96%), Danio rerio (93%) and Oncorhynchus mykiss (81%) Hsp70. Cloned $\beta$-actin cDNA of R. kumgangensis showed homology to D. rerio (98%), H. molitrix (97%), C. idella (97%) and O. mykiss (90%) $\beta$-actin. Both mRNA of Hsp70 and $\beta$-actin were expressed in gut, brain, and liver in R. kumgangensis. Futhermore, expression of Hsp70, in brain, was highly augmented by an increase of water temperature. These results suggest that Hsp70 mRNA expression level in brain can be used as a biological molecular marker to represent physiological stress against an increase of water temperature.

키워드

참고문헌

  1. Arai, A., Naruse, K., Mitani, H., and Shima, A. (1995). Cloning and Characterization of cDNAs for 70-kDa Heat-shock Proteins (Hsp70) from Two Fish Species of the Genus Oryzias, Japanese Journal of Genetics, 70(3), pp. 423-433. https://doi.org/10.1266/jjg.70.423
  2. Baek, H. M., Song, H. B., Sim, H. S., Kim, Y. G., and Kwon, O. K. (2002). Habitat Segregation and Prey Selectivity on Cohabitation Fishes, Phoxinus phoxinus and Rhynchocypris kumgangensis, Korean Journal Ichthyol, 14(2), pp. 121-131.
  3. Chatterjee, S., Premachandran, S., Shukla, J., and Poduval, T. B. (2007). Synergistic Therapeutic Potential of Dexamethasone and L-arginine in Lipopolysaccharide-induced Septic Shock, The Journal of Surgical Research, 140(1), pp. 99-108. https://doi.org/10.1016/j.jss.2006.09.002
  4. Choi, C. Y., Mih, B. H., Kim, N. N., Cho, S. H., and Chang, Y. J. (2006). Expression of HSP90, HSP70 mRNA and Change of Plasma Cortisol and Glucose During Water Temperature Rising in Freshwater Adapted Black Porgy, Acanthopagrus schlegeli, Journal of Aquaculture, 19(4), pp. 315-322.
  5. Cui, H., Yan, Y., Wei, J., Hou, Z., Huang, Y., Huang, X., and Qin, Q. (2011). Cloning, Characterization, and Expression Analysis of Orange-spotted Grouper (Epinephelus coioides) ILF2 Gene (EcILF2), Fish & Shellfish Immunology, 30(1), pp. 378-388. https://doi.org/10.1016/j.fsi.2010.11.015
  6. Dix, D. J., Allen, J. W., Collins, B. W., Mori, C., Nakamura, N., Poorman-Allen, P., Goulding, E. H., and Eddy, E. M. (1996). Targeted Gene Disruption of Hsp70-2 Results in Failed Meiosis, Germ Cell Apoptosis, and Male Infertility, Proceedings of the National Academy of Sciences USA, 93(8), pp. 3264-3268. https://doi.org/10.1073/pnas.93.8.3264
  7. Garrido, C., Mehlen, P., Fromentin, A., Hammann, A., Assem, M., Arrigo, A. P., and Chauffert, B. (1996). Inconstant Association between 27-kDa Heat-shock Protein (Hsp27) Content and Doxorubicin Resistance in Human Colon Cancer Cells, European Journal of Biochemistry, 237(3), pp. 653-659. https://doi.org/10.1111/j.1432-1033.1996.0653p.x
  8. Garrido, C., Ottavi, P., Fromentin, A., Hammann, A., Arrigo, A. P., Chauffert, B., and Mehlen, P. (1997). HSP27 as a Mediator of Confluence-dependent Resistance to Cell Death Induced by Anticancer Drugs, Cancer Research, 57(13), pp. 2661-2667.
  9. Ha, K. J., Ha, E. H., Yoo, C. S., and Jeon, E. H. (2004). Temperature Trends and Extreme Climate since 1909 at Big Four Cities of Korea, Asia-Pacific Journal of Atmospheric Sciences, 40(1), pp. 1-16.
  10. Lapointe, D., Pierron, F., and Couture, P. (2011). Individual and Combined Effects of Heat Stress and Aqueous or Dietary Copper Exposure in Fathead Minnows (Pimephales promelas), Aquatic Toxicology, 104(1-2), pp. 80-85. https://doi.org/10.1016/j.aquatox.2011.02.022
  11. Lele, Z., Engel, S., and Krone, P. H. (1997). Hsp47 and hsp70 Gene Expression is Differentially Regulated in a Stress- and Tissue-specific Manner in Zebrafish Embryos, Developmental Genetics, 21(2), pp. 123-133. https://doi.org/10.1002/(SICI)1520-6408(1997)21:2<123::AID-DVG2>3.0.CO;2-9
  12. Mehlen, P., Kretz-Remy, C., Preville, X., and Arrigo, A. P. (1996). Human hsp27, Drosophila hsp27 and Human alphaBcrystallin Expression-mediated Increase in Glutathione is Essential for the Protective Activity of These Proteins Against TNFalpha-induced Cell Death, The EMBO Journal, 15(11), pp. 2695-2706.
  13. Nylandsted, J., Brand, K., and Jaattela, M. (2000). Heat Shock Protein 70 is Required for the Survival of Cancer Cells, Annals of the New York Academy of Sciences, 926, pp. 122-125.
  14. Nylandsted, J., Rhode, M., Brand, K., Bastholm, L., Elling, F., and Jaattela, M. (2000). Selective Depletion of Heat Shock Protein 70 (Hsp70) Activates a Tumor-Specific Death Program that is Independent of Caspases and Bypasses Bcl-2, Proceedings of the National Academy of Sciences USA, 97(14), pp. 7871-7876. https://doi.org/10.1073/pnas.97.14.7871
  15. Nylandsted, J., Wick, W., Hirt, U. A., Brand, K., Rohde, M., Leist, M., Weller, M., and Jaattela, M. (2002). Eradication of Glioblastoma, and Breast and Colon Carcinoma Xenografts by Hsp70 Depletion, Cancer Research, 62(24), pp. 7139-7142.
  16. Ojima, N., Yamashita, M., and Watabe, S. (2005). Comparative Expression Analysis of Two Paralogous Hsp70s in Rainbow Trout Cells Exposed to Heat Stress, Biochimica et Biophysica Acta, 1681(2-3), pp. 99-106. https://doi.org/10.1016/j.bbaexp.2004.10.006
  17. Parcellier, A., Gurbuxani, S., Schmitt, E., Solary, E., and Garrido, C. (2003). Heat Shock Proteins, Cellular Chaperones that Modulate Mitochondrial Cell Death Pathways, Biochemical and Biophysical Research Communications, 304(3), pp. 505-512. https://doi.org/10.1016/S0006-291X(03)00623-5
  18. Ribecco, C., Hardiman, G., Sasik, R., Vittori, S., and Carnevali, O. (2012). Teleost Fish (Solea solea): a Novel Model for Ecotoxicological Assay of Contaminated Sediments, Aquatic Toxicology, 109, pp. 133-142. https://doi.org/10.1016/j.aquatox.2011.12.002
  19. Rios-Sicairosa, J., Betancourt-Lozanoa, M., Leal-Tarina, B., Hernandez-Cornejoa, R., Aguilar-Zaratea, G., Garcia-De-La-Parraa, L. M., Gutierrezb, J. N., Marquez-Rochac, F., and Garcia-Gascaa, A. (2010). Heat-shock Protein (Hsp70) and Cytochrome P-450 (CYP1A) in the White Mullet Mugil curema (Pisces: Mugilidae) as Biomarkers to Assess Environmental Quality in Coastal Lagoons, Journal of Environmental Science and Health. Part A, Toxic/hazardous Substances & Environmental Engineering, 45(1), pp. 68-74. https://doi.org/10.1080/10934520903388855
  20. Ritossa, F. (1962). A New Puffing Pattern Induced by Temperature Shock and DNP in Drosophila, Experientia, 18(12), pp. 571-573. https://doi.org/10.1007/BF02172188
  21. Roberts, R. J., Agius, C., Saliba, C., Bossier, P., and Sung, Y. Y. (2010). Heat Shock Proteins (chaperones) in Fish and Shellfish and Their Potential Role in Relation to Fish Health, Journal of Fish Diseases, 33(10), pp. 789-801. https://doi.org/10.1111/j.1365-2761.2010.01183.x
  22. Schmitt, E., Parcellier, A., Gurbuxani, S., Cande, C., Hammann, A., Morales, M. C., Hunt, C. R., Dix, D. J., Kroemer, R. T., Giordanetto, F., Jaattela, M., Penninger, J. M., Pance, A., Kroemer, G., and Garrido, C. (2003). Chemosensitization by a Non-apoptogenic Heat Shock Protein 70-Binding Apoptosis-Inducing Factor Mutant, Cancer Research, 63(23), pp. 8233-8240.
  23. Welch, W. J. (1993). Heat Shock Proteins Functioning as Molecular Chaperones: Their Roles in Normal and Stressed Cells, Philosophical Transactions of the Royal Society B: Biological Sciences, 339(1289), pp. 327-333. https://doi.org/10.1098/rstb.1993.0031
  24. Xin, H., Zhang, H., Chen, L., Li, X., Lian, Q., Yuan, X., Hu, X., Cao, L., He, X., and Yi, M. (2010). Cloning and Characterization of HsfA2 from Lily (Lilium longiflorum), Plant Cell Reports, 29(8), pp. 875-885. https://doi.org/10.1007/s00299-010-0873-1
  25. Yang, J., Yang, L., Lv, Z., Wang, J., Zhang, Q., Zheng, H., and Wu, Z. (2012). Molecular Cloning and Characterization of a HSP70 Gene from Schistosoma japonicum, Parasitology Research, 110(5), pp. 1785-1793. https://doi.org/10.1007/s00436-011-2700-1
  26. Zhang, Z. and Zhang, Q. (2012). Molecular Cloning, Characterization and Expression of Heat Shock Protein 70 Gene from the Oyster Crassostrea Hongkongensis Responding to Thermal Stress and Exposure of $Cu^{2+}$ and Malachite Green, Gene, 497(2), pp. 172-180. https://doi.org/10.1016/j.gene.2012.01.058
  27. Zhiwen, Z., Zixuan, S., Junfeng, L., and Guren, Z. (2011). Molecular Cloning and Characterization of Two Heat Shock Proteins in Thitarodes Pui (lepidoptera: Hepialidae), Cryo Letters, 32(3), pp. 225-239.