$\beta$-TCP 계 인공뼈 합성에 있어 나노 TCP 분말 첨가 영향

The Influence of nano-TCP Powders in the $\beta$-TCP - Based Artificial Bone Synthesis

  • 장명철 (국립 군산대학교 신소재공학과) ;
  • 김태형 (국립 군산대학교 신소재공학과) ;
  • 김욱규 (국립부산대학교 치의학전문대학원 구강악안면과)
  • Chang, Myung Chul (Department of Materials Science & Engineering, Kunsan National University) ;
  • Kim, Tae Hyung (Department of Materials Science & Engineering, Kunsan National University) ;
  • Kim, Uk-Kyu (Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University)
  • 발행 : 2013.09.01

초록

탄산칼슘을 하소하여 얻어진 CaO와 dicalcium phosphate [DCPA, $CaHPO_4$]를 1:2 비율로 혼합하여 $1050^{\circ}C$에서 하소함으로써 $\beta$-tricalcium phosphate [$\beta$-TCP; $Ca_3(PO_4)_2$] 분말을 제조하였다. CaO와 인산을 출발원료로 하여 $37^{\circ}C$, pH 5.0 에 서의 $\beta$-TCP 상 합성조건에서 습식침전반응을 적용하여 만든 침전슬러리를 $95^{\circ}C$로 건조하여 아파타이트형 TCP인 나노 인산칼슘 [nano-TCP] 분말을 얻었다. $1050^{\circ}C$에서 하소하여 만든 일반 $\beta$-TCP 분말에 nano-TCP 분말을 일정비율로 첨가하고 고분자 비드와 혼합하여 성형, 소결을 통해 다공성 인공뼈 블록을 합성하였다. 합성한 일반 $\beta$-TCP 분말로 합성한 인공뼈와 일반 $\beta$-TCP 분말을 매트릭스로 하여 micro-CT 분말을 첨가하여 만든 인공뼈 시편에 대한 SEM, XRD, micro-CT를 이용한 분석을 하였다. nano-TCP 분말의 첨가에 의해 소결시편의 XRD 상은 $\beta$-TCP 임을 확인하였고, 소결조직은 마크로 그레인 일반 $\beta$-TCP의 주위에 나노 TCP가 치밀하게 부착되어 고상반응으로 성장함을 보여주었다. micro-CT 결과 삼차원 다공성 조직임을 확인하였다. 압축강도는 nano-TCP 분말의 첨가 비율의 증가에 첨가량 60%까지 크게 증가하였다. 소결시편의 기공율은 60-70% 에 달하였다.

CaO was obtained by calcining calcium carbonate ($CaCO_3$) at $1050^{\circ}C$. For normal $\beta$-tricalcium phosphate ($\beta$-TCP) powders CaO and dicalcium phosphate (DCPA) were mixed at a molar ratio of 1:2 and calcined at $1050^{\circ}C$ for 2hours. Nano-TCP powders were synthesized at $37^{\circ}C$ by wet precipitation method using CaO and phosphoric acid. A certain percentage of nano-TCP powders were added into the normal $\beta$-TCP powders, and polystyrene (PS) beads were blended with the mixture to make a $\beta$-TCP block samples, which were sintered at 800-$1050^{\circ}C$. The $\beta$-TCP block samples were investigated by means of SEM, XRD, micro-CT. With the amount of nano-TCP powders the mechanical strength of the artificial bone block was investigated by UTM [Universal Testing machine].The microstructure of the sintered block was three dimensionally ordered macro/micro pore architecture of beta-TCP phase from XRD and micro-CT measurement. The compressive strength of sintered block increased with the addition of nano-TCP powders. The nano-TCP powders were attached on the surface of macro $\beta$-TCP powders and the sample body was greatly toughened with the sintering process. The measured porosity of the sintered body was from 60% to 70%.

키워드

참고문헌

  1. W. E. Brown and L. C. Chow, "A new calcium phosphate watersetting cement," in Cement Research Progress, P. W. Brown (Ed.), The American Ceramic Society, Westerville, Ohio, 1986, pp. 351-379.
  2. L. C. Chow, "Development of self-setting calcium phosphate cements," Nippon seramikkusu kyokai gakujutsu ronbunshi, 99(10), 954-964, (1991). https://doi.org/10.2109/jcersj.99.954
  3. P. W. Brown, "A new calcium phosphate, water setting cement," in Cements Research Progress, American Ceramic Society, Westerville, Ohio, 1987, pp. 352-379.
  4. M. C. Chang, "Biomaterials research using organic-inorganic nanocomposite of Hydroxyapatite" (in Korea), Future Bioceramics special issue, Ceramic International, 25, 78-87 (2012).
  5. M. C. Chang and R. DeLong, "Calcium phosphate formation in gelatin matrix using free ion precursors of $Ca^{2+}$ and phosphate ions," Dental Materials, 25, 261-268 (2009) https://doi.org/10.1016/j.dental.2008.07.005
  6. K. Lin, J. Chang, W. Wu, and Y. Zeng, "Properties of $\beta$-$Ca_3(PO_4)_2$ bioceramics prepared using nano-size powders", Ceram. Int., 33, 979-985 (2007). https://doi.org/10.1016/j.ceramint.2006.02.011
  7. I. R. Gibson, I. Rehman, S. M. Best, and W. Bonfield, "Characterization of the transformation from calcium deficient apatite to $\beta$-tricalcium phosphate", J. Mater.Sci.: Mater. Med., 12, 799-804 (2000).
  8. F. G. Evans, and R. Vincentelli, "Relations of the compressive properties of human cortical to histological structure and calcification ", J. Biomechanics, 7(10), 1-10 (1974). https://doi.org/10.1016/0021-9290(74)90064-5
  9. F. G. Evans, "The Mechanical Properties of Bone", Artificial Limbs, 13(1), 37-48 (1969).
  10. S. A. Goldstein, "The mechanical properties of trabecular bone dependence on anatomic location and function", J. Biomechanics, 20(11,12), 1055-61 (1987). https://doi.org/10.1016/0021-9290(87)90023-6
  11. N. Kivrak and A. C. Ta , "Synthesis of calcium hydroxyapatite-tricalcium phosphate (HA-TCP) composite bioceramics powders and their sintering behavior", J. Am. Ceram. Soc., 81, 2245-2252 (1998).
  12. L. Yubao, Z. Xingdong, and K. De Groot, "Hydrolysis and phase transition of alpha-tricalcium phosphate", Biomaterials, 18(10) 737-741 (1997). https://doi.org/10.1016/S0142-9612(96)00203-7