The Effect of BSM-Alginate Sponge on the Enhanced Early Proliferation of Epithelial Cells

BSM-alginate지지체가 Epithelial cells의 초기증식 개선에 미치는 영향

  • Choi, Jeong Yeon (Department of Biomedical Science, Graduate School, Kyungpook National University) ;
  • Oh, Ji Won (Biomedical Research Institute, Joint Institute for Regenerative Medicine, Kyungpook National University Hospital) ;
  • Kim, Su Jeong (Biomedical Research Institute, Joint Institute for Regenerative Medicine, Kyungpook National University Hospital) ;
  • Lim, Jeong Ok (Department of Biomedical Science, Graduate School, Kyungpook National University)
  • 최정연 (경북대학교 일반대학원 의과학과) ;
  • 오지원 (경북대학교병원 생명의학연구소) ;
  • 김수정 (경북대학교병원 생명의학연구소) ;
  • 임정옥 (경북대학교 일반대학원 의과학과)
  • Published : 2013.03.01

Abstract

Epithelial cells are known to be unstable at different passages, which is one of the big obstacles in hair regeneration. In this study, the effect of a newly developed scaffold composed of alginate and BSM (bladder submucosa matrix) on the adhesion and proliferation of hair epithelial cells was investigated. BSM is an extracellular matrix and known to have various types of growth factors, adhesion molecules, fibrin, albumin, lamina-A/C, keratin 1 and keratin 2A which enhance cell adhesion and proliferation. The BSM-alginate composite was fabricated into a sponge type scaffold by a freeze drying method. Porosity, structural morphology water absorption capacity, cell adhesion property and cytotoxicity of the scaffold were characterized. The results demonstrated that BSM-alginate sponge provided proper physical environment for proliferation of epithelial cells at early stage, indicating the potential of this composite scaffold as a biomaterial for hair regeneration.

Keywords

References

  1. C. A. Jahoda and A. J. Reynolds, "Dermal-epidermal interactions--follicle-derived cell populations in the study of hair-growth mechanisms," J. Invest. Dermatol., 101, 33S-38S (1993). https://doi.org/10.1111/1523-1747.ep12362577
  2. K. Stenn, S. Parimoo, Y. Zheng, T. Barrows, M. Boucher, and K. Washenik, "Bioengineering the Hair Follicle," Organogenesis., 3, 6-13, (2007). https://doi.org/10.4161/org.3.1.3237
  3. W. Y. Chi, D Enshell-Seijffers, and B. A. Morgan, "De novo production of dermal papilla cells during the anagen phase of the hair cycle," J. Invest. Dermatol., 130, 2664-2666 (2010). https://doi.org/10.1038/jid.2010.176
  4. G. J. Leiros, A. I. Attorresi, and M. E. Balana, "Hair follicle stem cell differentiation is inhibited through cross-talk between $Wnt/\beta-catenin$ and androgen signaling in dermal papilla cells from patients with androgenetic alopecia," Br. J. Dermatol., 166, 1035-42 (2012). https://doi.org/10.1111/j.1365-2133.2012.10856.x
  5. K. Yu. Gnedeva, E. A. Vorotelyak, A. V. Terskikh, A. V. Vasil'ev, and V. V. Terskikh, "Differential and morphogenetic potential of rat dermal papilla cells," Izv. Akad. Nauk. Ser. Biol., 6, 653-658 (2011).
  6. T. Matsuzaki and K. Yoshizato, "Role of hair papilla cells on induction and regeneration processes of hair follicles," Wound Repair Regen., 6, 524-30 (1998). https://doi.org/10.1046/j.1524-475X.1998.60605.x
  7. T. Matsuzaki, M. Inamatsu, and K. Yoshizato, "The upper dermal sheath has a potential to regenerate the hair in the rat follicular epidermis," Differentiation., 60, 287-297 (1996). https://doi.org/10.1046/j.1432-0436.1996.6050287.x
  8. A. Gharzi, A. J. Reynolds, and C. A. Jahoda, "Plasticity of hair follicle dermal cells in wound healing and induction," Exp Dermatol., 12, 126-36 (2003). https://doi.org/10.1034/j.1600-0625.2003.00106.x
  9. S. Luanpitpong, U. Nimmannit, P. Chanvorachote, S. S. Leonard, V. Pongrakhananon, L. Wang, and Y. Rojanasakul, "Hydroxyl radical mediates cisplatin-induced apoptosis in human hair follicle dermal papilla cells and keratinocytes through Bcl-2-dependent mechanism," Apoptosis., 16, 769-82 (2011). https://doi.org/10.1007/s10495-011-0609-x
  10. N. Aoi, K. Inoue, H. Kato, H. Suga, T. Higashino, H. Eto, K. Doi, J. Araki, T. Iida, T. Katsuta, and K. Yoshimura, "Clinically applicable transplantation procedure of dermal papilla cells for hair follicle regeneration," J. Tissue. Eng. Regen. Med., 6, 85-95 (2012). https://doi.org/10.1002/term.400
  11. K. M. Osorio, K. C. Lilja, and T. Tumbar, "Runx1 modulates adult hair follicle stem cell emergence and maintenance from distinct embryonic skin compartments," J. Cell Biol., 193, 235-250 (2011) https://doi.org/10.1083/jcb.201006068
  12. J. M. Lehman, E. Laag, E. J. Michaud, and B. K. Yoder, "An Essential Role for Dermal Primary Cilia in Hair Follicle Morphogenesis," J. Invest. Dermatol., 129, 438-448 (2009). https://doi.org/10.1038/jid.2008.279
  13. M. H. Kwack, Y. K. Sung, E. J. Chung, S. U. Im, J. S. Ahn, M. K. Kim, and J. C. Kim, "Dihydrotestosterone inducible dickkopf 1 from balding dermal papilla cells causes apoptosis in follicular keratinocytes," J. Invest. Dermatol., 128, 262-269 (2008).
  14. B. M. Kang, S. H. Shin, M. H. Kwack, H. Shin, J. W. Oh, J. KimJ, C. Moon, J. C. Kim, M. K. Kim, and Y. K. Sung, "Erythropoietin promotes hair shaft growth in cultured human hair follicles and modulates hair growth in mice," J. Dermatol. Sci., 59, 86-90 (2010). https://doi.org/10.1016/j.jdermsci.2010.04.015
  15. Y. Liang, K. A. Silva, V. Kennedy, and J. P. Sundberg, "Comparisons of mouse models for hair follicle reconstitution," Exp Dermatol., 20, 1011-1015 (2011). https://doi.org/10.1111/j.1600-0625.2011.01366.x
  16. V. C. Sandulache, A. Parekh, J. E. Dohar, and P. A. Hebda., "Fetal dermal fibroblasts retain a hyperactive migratory and contractile phenotype under 2-and 3-dimensional constraints compared to normal adult fibroblasts," Tissue Eng., 13, 2791-2801 (2007). https://doi.org/10.1089/ten.2006.0412
  17. S. J. King and M. Parsons, "Imaging cells within 3D cell-derived matrix," Methods Mol. Biol., 769, 53-64 (2011). https://doi.org/10.1007/978-1-61779-207-6_5
  18. R. W. Scott, D. Crighton, and M. F. Olson, "Modeling and imaging 3-dimensional collective cell invasion," J. Vis. Exp., 7, 3525 (2011).
  19. H. F. Ko, C. Sfeir, and P. N. Kumta, "Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering," Philos Transact A Math Phys Eng Sci., 28, 1981-1997 (2010).
  20. H. S. Yun, S. H. Kim, D. Khang, J. Choi, H. H. Kim, and M. Kang, "Biomimetic component coating on 3D scaffolds using high bioactivity of mesoporous bioactive ceramics," Int, J, Nano medicine., 6, 2521-2531 (2011).
  21. A. Steinbuchel and R. Marchessault, "Biopolymers for medical and pharmaceutical application," 2005, pp. 235-264
  22. Y. Qin, H. Hu, and A. Luo, "The conversion of calcium alginate fibers into alginic acid fibers and sodium alginate fibers," J. Appl. Poly. Sci., 101, 4216-4222 (2006). https://doi.org/10.1002/app.24524
  23. S. Moe, G. Skjak-braek, S. Olav, and I. Hisao, "Calcium alginate gel fibers: Influence of alginate source and gel structure on fiber strength," J. Appl. Poly. Sci., 51, 1771-1775 (1994). https://doi.org/10.1002/app.1994.070511010
  24. P. P. Reddy, D. J. Marrieras, J. B. Diego, W. Gregory, J. B. Darius, A. M. Gordon, E. K. Antoine, and A. M. Paul, "Regenerative of functional bladder substitutes using large segment acellular matrix allografts in a porcine model," J. Urol., 164, 936-941 (2000). https://doi.org/10.1016/S0022-5347(05)67221-7
  25. S. Y. Chun, G. J. Lim, T. G. Kwon, E. K. Kwak, B. W. Kim, A. Atala, J. J. Yoo, "Identification and characterization of bioactive factors in bladder submucosa matrix," Biomaterials., 28, 4251-4256 (2007). https://doi.org/10.1016/j.biomaterials.2007.05.020
  26. H. J. Lim, J. Y. Choi, and et al, "Bladder Submucosa Matrix- Alginate Hybrid Scaffol," Tissue Eng. Regen. Med., 8, 9-15 (2011).
  27. J. W. Oh, J. Y. Choi, M. Kim, A. Syed Izhar Haider, L. Hui Chongu, M. Kim, and J. O. Lim, "Fabrication and characterization of epithelial scaffolds for hair follicle regeneration," Tissue Eng. Regen. Med., 9, 147-156 (2012). https://doi.org/10.1007/s13770-012-0147-9