해상풍력시스템의 거동 해석을 위한 지반의 연성효과 고려방안

The Effect of Flexibility for the Offshore Wind Turbine System

  • Choi, Changho (Korea Institute of Construction technology Geotechnical engineering Research Division) ;
  • Han, Jintae (Korea Institute of Construction technology Geotechnical engineering Research Division) ;
  • Cho, Samdeok (Korea Institute of Construction technology Geotechnical engineering Research Division) ;
  • Jang, Youngeun (University of Science & Technology Department of Geospace engineering)
  • 발행 : 2013.04.01

초록

현재 해상풍력시스템의 거동 해석은 지반을 고정단으로 가정한 채로 수행하는 것이 일반적이라고 알려져 있다. 지반의 연성이 고려될 경우 해상풍력시스템의 고유 주파수뿐만 아니라 기초구조물 설계를 위한 하중 또한 변화할 것이라고 예상되나, 이에 대한 연구는 아직 미미한 실정이다. 이에 따라, 본 연구는 기초구조물의 연성을 고려하여 시스템 해석을 수행할 경우 시스템의 고유 주파수와 하중의 변화를 살펴보기 위한 목적으로 수행되었다. 해상풍력시스템의 해석을 위하여 풍력발전기 해석프로그램인 GH-Bladed를 활용하였으며, 해석 시에는 coupled spring 모델과 winkler spring 모델을 활용하여 기초구조물의 연성효과를 고려하였다. 해석결과 지반의 연성 고려방안 중 winkler spring 모델을 적용하여 산정한 시스템 1차모드 및 하중이 지반을 고정단으로 가정한 해석결과와 비교하여 감소하는 것을 확인하였으며, 이를 통하여 지반의 연성이 시스템의 거동에 미치는 영향을 관찰하였다.

The foundation of offshore wind energy system is generally assumed to be fixed-ended in system analysis for the convenience of calculation and, correspondingly, it might lead a conservative design. If soil-foundation interaction get involved with the analysis, the system characteristics such as natural frequency, shear force, moment and displacement are expected to differ from those of fixed-ended case. In this study, the analysis have been conducted to identify how the response of offshore wind turbine varies upon considering the foundation flexibility with soil-foundation interaction. The model taking account of the flexibility of foundation was compared with fixed-ended model at the seabed. The flexibilities of foundation were obtained by coupled spring model at the seabed and Winkler Spring Model with soil depth. As a result, the first mode of the whole system with the Winkler Spring Model was decreased relative to that with the fixed-ended model. The results showed that the effect of foundation flexibility should be considered when designing the offshore wind energy system.

키워드

참고문헌

  1. Arya, S., O'Neill, M. and Pincus, G. (1979). Design of structures and foundations for vibrating machines, Gulf Punlishing Company, Huston, Texas, pp. 77-90.
  2. Cho, C. (2010), Piling engineering practice, eng.book, pp. 195-217 (in Korean).
  3. Jang, Y., Choi, C., Han, J. and Lee, J. (2012), "A study for prediction of the response of the offshore wind energy system considering the soil stiffness", Korean Geotechnical Society 2012 spring conference, pp. 1513-1519 (in Korean)
  4. Kim, N. (2002), Effect of flexibility of foundation on seismic behavior of bridge columns, Master thesis, Seoul National University, pp. 1-11 (in Korean).
  5. Leblanc, C., Houlsby, G.T. and Byrne, B. (2010), "Response of stiff piles in sand to long-term cyclic lateral loading", Geotechnique, Vol. 60, No. 2, pp 79-90. https://doi.org/10.1680/geot.7.00196
  6. Matlock, H. (1970), "Correlations for design of laterally loaded piles in soft clay", Proceeding of 2th Offshore Technology Conference, Houston. Texas, Vol.1, No.1, pp.577-607.
  7. Novak, M. (1974), "Dynamic stiffness and damping of piles", Canadian Geotechnical Journal, Vol. 11, No. 4, pp. 574-598. https://doi.org/10.1139/t74-059
  8. Reese, L. C. (1997), "Analysis of laterally loaded piles in weak rock, Journal of Geotechnical and Geoenvironmental. Engineering", ASCE, Vol. 101, No. 7, pp. 1010-1017.
  9. Ryu, M., Kang, K., Lee, J. and Kim, J. (2011), "A suggestion for the foundation type of offshore wind turbine in the test bed on the basis of economic and constructibility analysis", Journal of Korea Wind Energy Association, Vol. 2, No. 1, pp. 44-52 (in Korean).