Biosensor Electrode Manufacturing Technology Using Nano-carbon Materials

나노 탄소물질을 이용한 바이오센서 전극제조 기술

  • Kim, Ji-Hyun (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Bae, Tae-Sung (Korea Basic Science Institute (KBSI)) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 김지현 (충남대학교 공과대학 바이오응용화학과) ;
  • 배태성 (한국기초과학지원연구원 전주센터) ;
  • 이영석 (충남대학교 공과대학 바이오응용화학과)
  • Published : 2013.04.10

Abstract

Due to human life expectancy of the recent development of medical technology recently, it leads to increase the desire for improving the quality of human life, and grow health concerns and needs. Therefore, in order to prevent the occurrence of disease and to check up a disease quickly, research on the development of a biosensor has been actively processed. One of them, the nano-carbon materials, are very suitable for manufacturing biosensor due to their excellent electrical/mechanical properties. In this review, we introduced the recent studies about preparation methods of carbon electrodes using the carbon nano-materials for biosensors as well as its technological applications.

최근 의료기술의 발달로 인한 인간 수명의 연장으로 삶의 질 향상에 대한 욕구가 증가되었고, 또한 건강에 대한 관심과 요구를 증가되고 있다. 따라서 질병을 예방하고, 신속하게 검진 받을 수 있는 바이오센서의 개발에 대한 연구도 또한 활발히 진행되고 있다. 이들 연구에서 나노 탄소물질은 우수한 전기적/기계적 물성을 가지고 있어 바이오센서전극제조에 적합한 것으로 알려져 있다. 본 총설에서는 바이오센서 전극 제조방법 및 응용과 더불어 최근 주목을 받고 있는 나노 탄소물질을 이용한 탄소전극 제조 방법에 초점을 맞추어 소개하고자 한다.

Keywords

References

  1. 최철종, 나노바이오센서 연구 동향, 나노세라믹스 연구 및 산업화현황, 제14권 제4호 (2011).
  2. Z. H. Ni, K. S. Novoselov, and A. K. Geim, Nano Lett. On-line (2010).
  3. E. J. Park, M. J. Song, S. I. Hong, and N, K, Min, 대한전기학회 하계학술대회 논문집, 7, 12 (2006).
  4. T. Helbling et al., Nano Lett., 10, 3350 (2010). https://doi.org/10.1021/nl101031e
  5. K. Maehashi, Y. Ohno, K. Inoue, and K. Matsumoto, Appl. Phys. Lett., 85, 858 (2004). https://doi.org/10.1063/1.1778471
  6. J. Okuno, K Maehashi, K. Matsumoto, K. Kerman, Y. Takamura, and E. Tamiya, Electrochem. Commun., 9, 13 (2007). https://doi.org/10.1016/j.elecom.2006.07.046
  7. Q. Gao, Y. Guo, W. Zhang, H. Qi, and C. Zhang, Sens. Actuators B, 153, 219 (2011). https://doi.org/10.1016/j.snb.2010.10.034
  8. X. Liu, X. Zeng, N. Mai, Y. Liu, B. Kong, Y. Li, W. Wei, and X. Luo, Biosens. Bioelectron., 25, 2675 (2010). https://doi.org/10.1016/j.bios.2010.04.045
  9. Y. Wang, P. P. Joshi, K. L. Hobbs, M. B. Johnson, and D. W. Schmidtke, Langmuir, 9776 (2006).
  10. K. Sirkar, A. Revzin, and M. V. Pishko, Anal. Chem., 72, 2930 (2000). https://doi.org/10.1021/ac991041k
  11. Y. Liu, M. Wang, F. Zhao, Z. Xu, and S. Dong, Biosens. Bioelectron., 21, 984 (2005). https://doi.org/10.1016/j.bios.2005.03.003
  12. C. Deng, J. Chen, Z. Nie, and S. Si, Biosens. Bioelectron., 26, 213 (2010). https://doi.org/10.1016/j.bios.2010.06.013
  13. M. C. Tsai and Y. C. Tsai, Sens. Actuators B, 141, 592 (2009). https://doi.org/10.1016/j.snb.2009.06.016
  14. S. Hrapovic, Y. Liu, K. B. Male, and H. T. Luong, Anal. Chem., 76, 1083 (2004). https://doi.org/10.1021/ac035143t
  15. M. D. Shirsat, C. O. Too, and G. G. Wallace, Electroanalysis, 20, 150 (2008). https://doi.org/10.1002/elan.200704028
  16. A. Salimi, R. G. Compton, and R. Hallaj, Anal. Biochem., 333, 49 (2004). https://doi.org/10.1016/j.ab.2004.06.039
  17. J. S. Im, J. Yun, J. G. Kim, T. S. Bae, and Y. S Lee, Appl. Sur. Sci., 258, 2219 (2012). https://doi.org/10.1016/j.apsusc.2011.08.017
  18. 이영석, 다공성 탄소, 물리학과 첨단기술 (2004).
  19. J. W. Lim, E. Jeong, M. J. Jung, S. I. Lee, and Y. S Lee, J. Ind. Eng. Chem., 18, 116 (2012). https://doi.org/10.1016/j.jiec.2011.11.074
  20. Y. S. Lee and J. S. Rho, Prospec. Indus. Chem., 6, 33 (2003).
  21. J. G. Kim, J. S. Im, T. S. Bae, J. H. Kim, and Y. S. Lee, J. Ind. Eng. Chem., 19, 94 (2013). https://doi.org/10.1016/j.jiec.2012.07.008
  22. E. T. Mickelson, C. B. Hoffman, A. G. Rinzler, R. E. Smalley, R. H. Hauge, and J. L. Margrave, Chem. Phys. Lett., 296, 188 (1998). https://doi.org/10.1016/S0009-2614(98)01026-4
  23. K. H. An, J. G. G. Heo, K. G, Jeon, D. J. Bae, C. W. Yang, C. Y. Park, Y. S. Lee, Y. H. Lee, and Y. S. Chung, Appl. Phys. Lett., 80, 4235 (2002). https://doi.org/10.1063/1.1482801
  24. Y. S. Lee, T. H. Choi, B. K. Lee, J. S. Rho, K. H. An, and Y. H. Lee, J. Fluor. Chem., 120, 99 (2003). https://doi.org/10.1016/S0022-1139(02)00316-0
  25. Y. J. Yun, J. Advan. Engineer. Technol., 2, 145 (2009).
  26. H. Zhong, R. Yuan, Y. Chai, W. Li, X. Zhong, and Y. Zhang, Talanta, 85, 104 (2011). https://doi.org/10.1016/j.talanta.2011.03.040
  27. R. Nenkova, D. Ivanova, J. Vladimirova, and T. Godjevargova, Sens. Actuators B, 148, 59 (2010). https://doi.org/10.1016/j.snb.2010.05.034
  28. P. Ayala, W. Plank, A. Gruneis, E. I. Kauppinen, M. H. Rummeli, H. Kuzmany, and T. Pichler, J. Mater. Chem., 18, 5676 (2008). https://doi.org/10.1039/b809050e
  29. Y. B. Hahn, R. Ahmad, and N. Tripathy, Chem. Commun., 48, 10369 (2012). https://doi.org/10.1039/c2cc34706g
  30. J. Zhao, D. Wu, and J. Zhi, Bioelectrochemistry, 75, 44 (2009). https://doi.org/10.1016/j.bioelechem.2009.01.005
  31. M. Ahmad, C. Pan, Z. Luo, and J. Zhu, J. Phys. Chem. C, 114, 9308 (2010). https://doi.org/10.1021/jp102505g
  32. C. Yang, C. Xu, and X. Wang, Langmuir, 28, 4580 (2012). https://doi.org/10.1021/la2044202
  33. A. Umar, M. M. Rahman, A. A. Hajry, and Y. B. Hahn, Electrochem. Commun, 11, 278 (2009). https://doi.org/10.1016/j.elecom.2008.11.027
  34. D. Patil, N. Q. Dung, H. Jung, S. Y. Ahn, D. M. Jang, and D. Kim, Biosens. Bioelectron., 31, 176 (2012). https://doi.org/10.1016/j.bios.2011.10.013
  35. F. Hu, S. Chen, C. Wang, R. Yuan, Y. Chai, Y. Xiang, and C. Wang, J. Mol. Catal. B: Enzym., 72, 298 (2011). https://doi.org/10.1016/j.molcatb.2011.07.005
  36. Y. T. Wang, L. Yu, Z. Q. Zhu, J. Zhang, J. Z. Zhu, and C. H. Fan, Sens. Actuators, B, 136, 332 (2009). https://doi.org/10.1016/j.snb.2008.12.049
  37. X. Pang, D. He, S. Luo, and Q. Cai, Sens. Actuators, B, 137, 134 (2009). https://doi.org/10.1016/j.snb.2008.09.051
  38. N. Q. Dung, D. Patil, T. T. Duong, H. Jung, D. Kim, and S. G. Yoon, Sens. Actuators, B, 103, 166 (2012).
  39. M. Tasviri, H. A. Rafiee-Pour, H. Ghourchian, and M. R. Gholami, J. Mol. Catal. B: Enzym., 68, 206 (2011). https://doi.org/10.1016/j.molcatb.2010.11.005
  40. X. J. Zhang, G. F. Wang, W. Zhang, Y. Wei, and B. Fang, Biosens. Bioelectron., 24, 3395 (2009). https://doi.org/10.1016/j.bios.2009.04.031
  41. L. C. Jiang and W. D. Zhang, Biosens. Bioelectron., 25, 1402 (2010). https://doi.org/10.1016/j.bios.2009.10.038
  42. J. Chen and W. D. Zhang, Electrochem. Commun., 10, 1268 (2008). https://doi.org/10.1016/j.elecom.2008.06.022