Studies of Adsorption on the Anionic Surface of $SiO_2$ by Cationic Modified Starches

전분의 양성화 개질을 통한 음이온성 $SiO_2$ 표면에서의 흡착 특성 연구

  • Published : 2013.02.10

Abstract

The adsorption characteristics of cationic starches and starch-oligomers were investigated using the quartz crystal microbalance with dissipation monitoring (QCM-D). The adsorbed amount of modified starches was higher than that of cationic surfactants such as $C_{12{\sim}16}$ trimethylammonium bromide. Cationic starches did not show the tendency depending on the degree of cationic substitution and molecular weight. On the other hand, the softness of the adsorption layer increased with the molecular weight of cationic starches in a viscoelasticity terms. During the adsorption/desorption steps, the amount of adsorbed cationic surfactants was 4~9 times. On the other hand, the difference in the amount of adsorption of all the $C_1$ grafted cationic starches was just 0~50%. In addition, the rigidity of the adsorption layer of cationic surfactant in the desorption step decreased, while, that of cationic starches increased at the same condition.

Quartz crystal microbalance with dissipation monitoring (QCM-D)을 활용하여 양이온성으로 치환된 전분 및 올리고당의 흡착특성을 연구하였다. 전 합성계열의 흡착량은 양이온 계면활성제($C_{12{\sim}16}$ trimethylammonium bromide) 대비 높은 흡착량을 보였으며, 치환비율 및 분자량에 따른 특별한 흡착량의 경향성은 관찰되지 않았다. 반면에, 점탄성(viscoelasticity) 측면에서는 분자량이 증가될수록 흡착층의 강도가 증가되는 경향이 관찰되었다. 흡착 및 탈착실험에서 단분자인 양이온성 계면활성제의 흡착량의 차이는 약 4~9배에 수준의 큰 차이가 발생되었으나 양성치환된 전분계열에서는 0~50% 수준의 작은 차이를 나타내었다. 또한, 탈착단계 이후 흡착단계에 비해 양이온 계면활성제에서는 흡착층의 강도 (rigidity)가 감소된 반면 양성치환된 전분계열에서는 강도가 증가되는 상반된 경향이 관찰되었다.

Keywords

References

  1. A. Kraak, Ind. Crops Prod., 1, 107 (1993).
  2. X. Tang and S. Alavi, Carbohydr. Polym., 85, 7 (2011). https://doi.org/10.1016/j.carbpol.2011.01.030
  3. D. R. Lu, C. M. Xiao, and S. J. Xu, eXPRESS Polym. Lett., 6, 366 (2009).
  4. Y. Wei, F. Cheng, and H. Zheng, Carbohydr. Polym., 74, 673 (2008). https://doi.org/10.1016/j.carbpol.2008.04.026
  5. M. Nichifor, M. C. Stanciu, and B. C. Simionescu, Carbohydr. Polym., 82, 965 (2010). https://doi.org/10.1016/j.carbpol.2010.06.027
  6. R. Kavaliauskaite, R. Klimaviciute, and A. Zemaitaitis, Carbohydr. Polym., 73, 665 (2008). https://doi.org/10.1016/j.carbpol.2008.01.019
  7. J. Bendoraitiene, R. Kavaliauskaite, R. Klimaviciute, and A. Zemaitaitis, Starch/Starke, 58, 623 (2006). https://doi.org/10.1002/star.200600541
  8. A. Larsson and S. Wall, Colloid Surf. A, 139, 259 (1998). https://doi.org/10.1016/S0927-7757(98)00326-4
  9. S. Pal, D. Mal, and R. P. Singh, Carbohydr. Polym., 59, 417 (2005). https://doi.org/10.1016/j.carbpol.2004.06.047
  10. J. S. Kim, J. S. Park, and J. C. Lim, J. Korean Ind. Eng. Chem., 20, 9 (2009).
  11. T. Tammelin, J. Merta, L. S. Johansson, and P. Stenius, Langmuir, 20, 10900 (2004). https://doi.org/10.1021/la0487693
  12. K. S. Kontturi, T. Tammelin, L. S. Johansson, and P. Stenius, Langmuir, 24, 4743 (2008). https://doi.org/10.1021/la703604j
  13. J. C. Lim and D. S. Han, Colloid Surf., A, 389, 116 (2011).
  14. L. Lundstrom-Hamala, E. Johansson, and L. Wagberg, Starch/Starke, 62, 102 (2010). https://doi.org/10.1002/star.200900176