Modification of PLA/PBAT Blends and Thermal/Mechanical Properties

PLA/PBAT 블렌드의 개질과 열적, 기계적 특성

  • Kim, Dae-Jin (Leaders in Industry-University Cooperation Foundation, Kyungpook National University) ;
  • Min, Chul-Hee (Department of Polymer Science & Engineering, Kyungpook National University) ;
  • Park, Hae-Youn (Department of Polymer Science & Engineering, Kyungpook National University) ;
  • Kim, Sang-Gu (R&D Center, Woosung Chemical Ltd.) ;
  • Seo, Kwan-Ho (Department of Polymer Science & Engineering, Kyungpook National University)
  • 김대진 (경북대학교 산학협력선도대학사업단) ;
  • 민철희 (경북대학교 고분자공학과) ;
  • 박해윤 (경북대학교 고분자공학과) ;
  • 김상구 ((주)우성케미칼 연구소) ;
  • 서관호 (경북대학교 고분자공학과)
  • Published : 2013.02.10

Abstract

Poymer blends of two degradable aliphatic polyesters, relatively expensive material polylactic acid (PLA) and relatively inexpensive material poly(butylene adipate-co-terephthalate) (PBAT), were used in this study. Three different kinds of modifiers were used with various amounts. Diisocyanate type methylenediphenyl 4,4'-diisocyanate (MDI) and hexamethylene diisocyanate (HDI) were used as modifiers and epoxy type coupling agents also used. The melt flow index (MFI) and dynamic viscoelasticity of various compositions of PLA/PBAT blends were studied. The mechanical property and morphology with respect to the fracture surface of PLA/PBAT blends were also investigated using tensile test and field emission scanning electronic microscopy, respectively. These tests were also used to verify the compatibility of PLA/PBAT and the effect of mechanical properties due to the use of modifiers. Tensile properties of PLA/PBAT blends modified with HDI were improved remarkably.

본 연구에서는 생분해성 지방족 폴리에스터 중 비교적 고가인 poly(butylene adipate-co-terephthalate) (PBAT)와 상대적으로 저가의 생분해성 고분자인 polylactic acid (PLA)의 블렌드에 3종류의 개질제를 사용하여 그 효과를 조사하였다. 개질제로는 에폭시계의 커플링제와 diisocyanate계열의 methylenediphenyl 4,4'-diisocyanate (MDI)와 hexamethylene diisocyanate (HDI)를 사용하였다. 여러 가지 조성의 블렌드에 용융흐름지수, 동적 점탄성을 조사하였다. 또한, 인장시험을 통한 기계적 물성 조사와 FE-SEM으로 시편의 파단표면을 관찰하였다. 이를 통해 PLA/PBAT 블렌드의 상용성과 개질제의 효과 및 기계적물성에 미치는 영향을 고찰하였다. 개질제로 HDI를 사용했을 때 PLA/PBAT의 인장물성이 크게 증가하였다.

Keywords

References

  1. L. A. Utracki, Polymer Alloys and Blend, 340, Hanser Publishers, New York (1989).
  2. D. R. Paul and S. Newman. Polymer Blends, 28, Academic Press, New York (1978).
  3. L. A. Utracki, Polym. Eng. Sci., 34, 1720 (1994). https://doi.org/10.1002/pen.760342303
  4. J. Dorgan, J. Lehermeier, L. Palade, and J. Cicero, Macromol. Symp., 175, 55 (2001).
  5. S. Jscobsen, P. H. Degee, H. G. Fritz, P. H. Dubois, and R. Jerome, Polym. Eng. Sci., 39, 1311 (1999). https://doi.org/10.1002/pen.11518
  6. D. W. Grijpma, R. Van Hofslot, H. Super, A. Nijenhuis, and J. Pennings, Polym. Eng. Sci., 34, 1674 (1994). https://doi.org/10.1002/pen.760342205
  7. W. H. Carothers, G. L. Dorough, and F. J. Van natta, J. Am. Chem. Soc., 54, 761 (1932). https://doi.org/10.1021/ja01341a046
  8. http://www2.dupont.com/medical_packaging.
  9. R. G. Sinclair, ANTEC., 87, 1214 (1987).
  10. H. R. Kricheldorf and I. Kreiser-Saunders, Macromol. Symp., 103, 85 (1996).
  11. H. Tsuji and Y. Ikada, Macromol. Chem. Phys., 197, 3483 (1996). https://doi.org/10.1002/macp.1996.021971033
  12. J. E. Bergsma, R. Bos, F. R. Rozema, W. D. Jong, and G. Boering, J. Mater. Sci. Mater. Med., 7, 1 (1996). https://doi.org/10.1007/BF00121181
  13. K. J. Zhu, X. Z. Lin, and S. L. Yang, J. Appl. Polym. Sci., 39, 1 (1990). https://doi.org/10.1002/app.1990.070390101
  14. S. Y. Lee, I. J. Chin, and J. S. Jung, Eur. Polym. J., 35, 2147 (1999). https://doi.org/10.1016/S0014-3057(99)00024-5
  15. K. Bechtold, M. Hillmyer, and W. Tolman, Macromolecules, 34, 8641 (2001). https://doi.org/10.1021/ma0114887
  16. J. C. Meredith and E. J. Amis, Macromol. Chem. Phys., 201, 733 (2000). https://doi.org/10.1002/(SICI)1521-3935(20000301)201:6<733::AID-MACP733>3.0.CO;2-5
  17. X. Liu, M. Dever, N. Fair, and R. Benson, J. Environ. Polym. Degrad., 5, 225 (1997).
  18. S. Jacobsen and H. G. Fritz, Polym. Eng. Sci., 39, 1303 (1999). https://doi.org/10.1002/pen.11517
  19. O. Martin and L. Averous, Polymer, 42, 6209 (2001). https://doi.org/10.1016/S0032-3861(01)00086-6
  20. N. Ljungberg and B. Wesslen, J. Appl. Polym. Sci., 86, 1227 (2002). https://doi.org/10.1002/app.11077
  21. W. H. Carothers, Chemical Reviews, 8, 353 (1931). https://doi.org/10.1021/cr60031a001
  22. W. H. Carothers and J. W. Hill, J. Am. Chem. Soc., 54, 1579 (1932). https://doi.org/10.1021/ja01343a051
  23. T. Fujimaki, Polym. Degrad. Stabil., 59, 209 (1998). https://doi.org/10.1016/S0141-3910(97)00220-6
  24. E. Takiyama, I. Niikura, and Y. Hatano, US Patent 5,305,787 (1994).
  25. E. Takiyama, T. Fujimaki, S. Seki, T. Hokari, and Y. Hatano, US Patent 5,310,782 (1994).
  26. E. Takiyama, Y. Hatano, T. Fujimaki, S. Seki, T. Hokari, T. Hosogane, and N. Harigai, US Patent 5,436,056 (1995).
  27. E. Takiyama and T. Fujimaki, Biodegradable Plastics And Polymers: Proceedings of The Third International Scientific Workshop on Biodegradable Plastics And Polymers, 12, 584 (1994).
  28. E. Takiyama, N. Harigai, and T. Hokari, Japanese Patent H5-70,566, H5-70,572 (1993).
  29. E. Takiyama, L. Niikura, and Y. Hatano, US Patent 5,306,787 (1993).
  30. E. Takiyama and T. Fujimaki, Biodegradable Plastics And Polymers: Proceedings of The Third International Scientific Workshop on Biodegradable Plastics And Polymers, 12, 150 (1994).
  31. M. Ajioka, K. Enomoto, K. Suzuki, and A. Yamaguchi, Bull. Chem. Soc. Jpn., 68, 2125 (1995). https://doi.org/10.1246/bcsj.68.2125
  32. Y. Iwaya, K. Mukai, M. Kawanishi, and M. Nishinobara, US Patent 5,504,148 (1996).
  33. M. Mochizuki, K. Mukai, K. Yamada, N. Ichise, S. Murase, and Y. Iwaya, Macromolecules, 30, 7403 (1997). https://doi.org/10.1021/ma970036k
  34. T. Fujimaki and E. Takiyama, Polymer Preprints, Japan, 43, 3993 (1994).
  35. K. Weisskopf, J. Appl. Polym. Sci., 39, 2141 (1990). https://doi.org/10.1002/app.1990.070391009