DOI QR코드

DOI QR Code

Dual Switching Monopolar Radiofrequency Ablation Using a Separable Clustered Electrode: Comparison with Consecutive and Switching Monopolar Modes in Ex Vivo Bovine Livers

  • Yoon, Jeong-Hee (Department of Radiology, Seoul National University College of Medicine) ;
  • Lee, Jeong Min (Department of Radiology, Seoul National University College of Medicine) ;
  • Han, Joon Koo (Department of Radiology, Seoul National University College of Medicine) ;
  • Choi, Byung Ihn (Department of Radiology, Seoul National University College of Medicine)
  • Published : 2013.06.01

Abstract

Objective: To compare the in-vitro efficiency of dual-switching monopolar (DSM) radiofrequency ablation (RFA) using a separable clustered electrode (Octopus$^{(R)}$ electrodes) with consecutive monopolar (CM) and switching monopolar (SM) RFA techniques to create an ablative zone in the explanted bovine liver. Materials and Methods: For DSM-RFA, we used a prototype, three-channel, dual generator RFA Unit and Octopus$^{(R)}$ electrodes with three, 17 gauge internally cooled electrodes. The RFA Unit allowed simultaneous radiofrequency (RF) energy delivery to two electrodes of the Octopus$^{(R)}$ electrodes as well as automatic switching among the three electrode pairs according to the impedance changes. RF energy was sequentially applied to one of the three electrodes for 24 minutes (group A; CM mode, n = 10) or alternatively applied for 12 minutes (group B; SM mode, n = 10) or concurrently applied to a pair of electrodes for 12 minutes (group C; DSM mode, n = 10) in explanted bovine livers. Changes in the impedance and current during RFA as well as the dimensions of the thermal ablative zones were compared among the three groups. Results: The mean, delivered RF energy amounts in groups A, B, and C were 63.15 ${\pm}$ 8.6 kJ, 72.13 ${\pm}$ 5.4 kJ, and 106.08 ${\pm}$ 13.4 kJ, respectively (p < 0.001). The DSM mode created a significantly larger ablation volume than did the other modes, i.e., 68.1 ${\pm}$ 10.2 $cm^3$ (group A), 92.0 ${\pm}$ 19.9 $cm^3$ (group B), and 115.1 ${\pm}$ 14.0 $cm^3$ (group C) (p < 0.001). The circularity in groups A, B, and C were 0.84 ${\pm}$ 0.06, 0.87 ${\pm}$ 0.04 and 0.90 ${\pm}$ 0.03, respectively (p = 0.03). Conclusion: DSM-RFA using Octopus$^{(R)}$ electrodes can help create large ablative zones within a relatively short time.

Keywords

References

  1. Wu, YZ, Li, B, Wang, T, Wang, SJ, Zhou, YM,Radiofrequency ablation vs hepatic resection for solitary colorectal liver metastasis: a meta-analysis, World J Gastroenterol, 17, 1, 4143-4148(2011) https://doi.org/10.3748/wjg.v17.i36.4143
  2. Salhab, M, Canelo, R,An overview of evidence-based management of hepatocellular carcinoma: a meta-analysis, J Cancer Res Ther, 7, 2, 463-475(2011) https://doi.org/10.4103/0973-1482.92023
  3. Dupuy, DE, Goldberg, SN,Image-guided radiofrequency tumor ablation: challenges and opportunities--part II, J Vasc Interv Radiol, 12, 3, 1135-1148(2001) https://doi.org/10.1016/S1051-0443(07)61670-4
  4. Livraghi, T, Goldberg, SN, Lazzaroni, S, Meloni, F, Ierace, T, Solbiati, L,Hepatocellular carcinoma: radio-frequency ablation of medium and large lesions, Radiology, 214, 4, 761-768(2000) https://doi.org/10.1148/radiology.214.3.r00mr02761
  5. Kim, YS, Lee, WJ, Rhim, H, Lim, HK, Choi, D, Lee, JY,The minimal ablative margin of radiofrequency ablation of hepatocellular carcinoma (> 2 and < 5 cm) needed to prevent local tumor progression: 3D quantitative assessment using CT image fusion, AJR Am J Roentgenol, 195, 5, 758-765(2010) https://doi.org/10.2214/AJR.09.2954
  6. Kim, KW, Lee, JM, Klotz, E, Kim, SJ, Kim, SH, Kim, JY,Safety margin assessment after radiofrequency ablation of the liver using registration of preprocedure and postprocedure CT images, AJR Am J Roentgenol, 196, 6, W565-W572(2011) https://doi.org/10.2214/AJR.10.5122
  7. Lee, J, Lee, JM, Yoon, JH, Lee, JY, Kim, SH, Lee, JE,Percutaneous radiofrequency ablation with multiple electrodes for medium-sized hepatocellular carcinomas, Korean J Radiol, 13, 7, 34-43(2012) https://doi.org/10.3348/kjr.2012.13.1.34
  8. Wang, X, Sofocleous, CT, Erinjeri, JP, Petre, EN, Gonen, M, Do, KG,Margin size is an independent predictor of local tumor progression after ablation of colon cancer liver metastases, Cardiovasc Intervent Radiol, 36, 8, 166-175(2013) https://doi.org/10.1007/s00270-012-0377-1
  9. Mulier, S, Ni, Y, Jamart, J, Ruers, T, Marchal, G, Michel, L,Local recurrence after hepatic radiofrequency coagulation: multivariate meta-analysis and review of contributing factors, Ann Surg, 242, 9, 158-171(2005) https://doi.org/10.1097/01.sla.0000171032.99149.fe
  10. de Baere, T,[Ablation of liver metastases by radiofrequency], Cancer Radiother, 16, 10, 339-343(2012) https://doi.org/10.1016/j.canrad.2012.05.011
  11. Dodd, GD, Frank, MS, Aribandi, M, Chopra, S, Chintapalli, KN,Radiofrequency thermal ablation: computer analysis of the size of the thermal injury created by overlapping ablations, AJR Am J Roentgenol, 177, 11, 777-782(2001) https://doi.org/10.2214/ajr.177.4.1770777
  12. Bangard, C,[Radiofrequency of the liver - an update], Rofo, 183, 12, 704-713(2011) https://doi.org/10.1055/s-0029-1246082
  13. Min, JH, Lee, MW, Rhim, H, Choi, D, Kim, YS, Kim, YJ,Radiofrequency ablation for viable hepatocellular carcinoma around retained iodized oil after transcatheter arterial chemoembolization: usefulness of biplane fluoroscopy plus ultrasound guidance, Korean J Radiol, 13, 13, 784-794(2012) https://doi.org/10.3348/kjr.2012.13.6.784
  14. Goldberg, SN,Radiofrequency tumor ablation: principles and techniques, Eur J Ultrasound, 13, 14, 129-147(2001) https://doi.org/10.1016/S0929-8266(01)00126-4
  15. Widmann, G, Bodner, G, Bale, R,Tumour ablation: technical aspects, Cancer Imaging, 9 Spec No A, 15, S63-S67(2009)
  16. McWilliams, JP, Yamamoto, S, Raman, SS, Loh, CT, Lee, EW, Liu, DM,Percutaneous ablation of hepatocellular carcinoma: current status, J Vasc Interv Radiol, 21, 16, S204-S213(2010) https://doi.org/10.1016/j.jvir.2009.11.025
  17. Seong, NJ, Yoon, CJ, Kang, SG, Chung, JW, Kim, HC, Park, JH,Effects of arsenic trioxide on radiofrequency ablation of VX2 liver tumor: intraarterial versus intravenous administration, Korean J Radiol, 13, 17, 195-201(2012) https://doi.org/10.3348/kjr.2012.13.2.195
  18. Lee, ES, Lee, JM, Kim, WS, Choi, SH, Joo, I, Kim, M,Multiple-electrode radiofrequency ablations using Octopus$^{\circledR}$ electrodes in an in vivo porcine liver model, Br J Radiol, 85, 18, e609-e615(2012) https://doi.org/10.1259/bjr/61619687
  19. Lee, JM, Han, JK, Kim, HC, Choi, YH, Kim, SH, Choi, JY,Switching monopolar radiofrequency ablation technique using multiple, internally cooled electrodes and a multichannel generator: ex vivo and in vivo pilot study, Invest Radiol, 42, 19, 163-171(2007) https://doi.org/10.1097/01.rli.0000252495.44818.b3
  20. Stoffner, R, Kremser, C, Schullian, P, Haidu, M, Widmann, G, Bale, RJ,Multipolar radiofrequency ablation using 4-6 applicators simultaneously: a study in the ex vivo bovine liver, Eur J Radiol, 81, 20, 2568-2575(2012) https://doi.org/10.1016/j.ejrad.2011.10.031
  21. Lee, JM, Han, JK, Kim, HC, Kim, SH, Kim, KW, Joo, SM,Multiple-electrode radiofrequency ablation of in vivo porcine liver: comparative studies of consecutive monopolar, switching monopolar versus multipolar modes, Invest Radiol, 42, 21, 676-683(2007) https://doi.org/10.1097/RLI.0b013e3180661aad
  22. Clasen, S, Schmidt, D, Boss, A, Dietz, K, Krober, SM, Claussen, CD,Multipolar radiofrequency ablation with internally cooled electrodes: experimental study in ex vivo bovine liver with mathematic modeling, Radiology, 238, 22, 881-890(2006) https://doi.org/10.1148/radiol.2382050571
  23. Lee, JM, Han, JK, Lee, JY, Kim, SH, Choi, JY, Lee, MW,Hepatic radiofrequency ablation using multiple probes: ex vivo and in vivo comparative studies of monopolar versus multipolar modes, Korean J Radiol, 7, 23, 106-117(2006) https://doi.org/10.3348/kjr.2006.7.2.106
  24. Lee, JD, Lee, JM, Kim, SW, Kim, CS, Mun, WS,MR imaging-histopathologic correlation of radiofrequency thermal ablation lesion in a rabbit liver model: observation during acute and chronic stages, Korean J Radiol, 2, 24, 151-158(2001) https://doi.org/10.3348/kjr.2001.2.3.151
  25. Garrean, S, Hering, J, Saied, A, Helton, WS, Espat, NJ,Radiofrequency ablation of primary and metastatic liver tumors: a critical review of the literature, Am J Surg, 195, 25, 508-520(2008) https://doi.org/10.1016/j.amjsurg.2007.06.024
  26. Lin, SM,Recent advances in radiofrequency ablation in the treatment of hepatocellular carcinoma and metastatic liver cancers, Chang Gung Med J, 32, 26, 22-32(2009)
  27. Ritz, JP, Lehmann, KS, Reissfelder, C, Albrecht, T, Frericks, B, Zurbuchen, U,Bipolar radiofrequency ablation of liver metastases during laparotomy. First clinical experiences with a new multipolar ablation concept, Int J Colorectal Dis, 21, 27, 25-32(2006) https://doi.org/10.1007/s00384-005-0781-y
  28. Clasen, S, Rempp, H, Schmidt, D, Schraml, C, Hoffmann, R, Claussen, CD,Multipolar radiofrequency ablation using internally cooled electrodes in ex vivo bovine liver: correlation between volume of coagulation and amount of applied energy, Eur J Radiol, 81, 28, 111-113(2012) https://doi.org/10.1016/j.ejrad.2010.10.031
  29. Lee, FT, Haemmerich, D, Wright, AS, Mahvi, DM, Sampson, LA, Webster, JG,Multiple probe radiofrequency ablation: pilot study in an animal model, J Vasc Interv Radiol, 14, 29, 1437-1442(2003) https://doi.org/10.1097/01.RVI.0000096771.74047.C8
  30. Lee, IJ, Kim, YI, Kim, KW, Kim, DH, Ryoo, I, Lee, MW,Radiofrequency ablation combined with transcatheter arterial embolisation in rabbit liver: investigation of the ablation zone according to the time interval between the two therapies, Br J Radiol, 85, 30, e987-e994(2012) https://doi.org/10.1259/bjr/90024696
  31. Lee, JM, Han, JK, Kim, SH, Choi, SH, An, SK, Han, CJ,Bipolar radiofrequency ablation using wet-cooled electrodes: an in vitro experimental study in bovine liver, AJR Am J Roentgenol, 184, 31, 391-397(2005) https://doi.org/10.2214/ajr.184.2.01840391

Cited by

  1. Monopolar Radiofrequency Ablation Using a Dual-Switching System and a Separable Clustered Electrode: Evaluation of the In Vivo Efficiency vol.15, pp.2, 2013, https://doi.org/10.3348/kjr.2014.15.2.235
  2. Ultrasound-Guided Percutaneous Radiofrequency Ablation of Liver Tumors: How We Do It Safely and Completely vol.16, pp.6, 2013, https://doi.org/10.3348/kjr.2015.16.6.1226
  3. Switching bipolar hepatic radiofrequency ablation using internally cooled wet electrodes: comparison with consecutive monopolar and switching monopolar modes vol.88, pp.1050, 2013, https://doi.org/10.1259/bjr.20140468
  4. Switching Monopolar Radiofrequency Ablation Using a Separable Cluster Electrode in Patients with Hepatocellular Carcinoma: A Prospective Study vol.11, pp.8, 2016, https://doi.org/10.1371/journal.pone.0161980
  5. No-Touch Radiofrequency Ablation: A Comparison of Switching Bipolar and Switching Monopolar Ablation in Ex Vivo Bovine Liver vol.18, pp.2, 2017, https://doi.org/10.3348/kjr.2017.18.2.279
  6. Percutaneous Dual-Switching Monopolar Radiofrequency Ablation Using a Separable Clustered Electrode: A Preliminary Study vol.18, pp.5, 2013, https://doi.org/10.3348/kjr.2017.18.5.799
  7. No-touch radiofrequency ablation using multiple electrodes: An in vivo comparison study of switching monopolar versus switching bipolar modes in porcine livers vol.12, pp.4, 2013, https://doi.org/10.1371/journal.pone.0176350
  8. Recent Advances in the Image-Guided Tumor Ablation of Liver Malignancies: Radiofrequency Ablation with Multiple Electrodes, Real-Time Multimodality Fusion Imaging, and New Energy Sources vol.19, pp.4, 2018, https://doi.org/10.3348/kjr.2018.19.4.545
  9. Comparison of switching bipolar ablation with multiple cooled wet electrodes and switching monopolar ablation with separable clustered electrode in treatment of small hepatocellular carcinoma: A rando vol.13, pp.2, 2013, https://doi.org/10.1371/journal.pone.0192173
  10. The Role of a Curved Electrode with Controllable Direction in the Radiofrequency Ablation of Liver Tumors Behind Large Vessels vol.42, pp.6, 2019, https://doi.org/10.1007/s00270-019-02182-0
  11. Radiofrequency Ablation Using a Separable Clustered Electrode for the Treatment of Hepatocellular Carcinomas: A Randomized Controlled Trial of a Dual-Switching Monopolar Mode Versus a Single-Switching vol.21, pp.None, 2013, https://doi.org/10.3348/kjr.2020.0134
  12. Comparison of hydrochloric acid infusion radiofrequency ablation with microwave ablation in an ex vivo liver model vol.37, pp.1, 2013, https://doi.org/10.1080/02656736.2020.1772995
  13. Linear radiofrequency ablation using dual switching-control mode achieves rapid and bloodless liver resection, an experimental research vol.38, pp.1, 2013, https://doi.org/10.1080/02656736.2021.1892215
  14. Recent technical advances in radiofrequency ablations for hepatocellular carcinoma vol.10, pp.4, 2013, https://doi.org/10.18528/ijgii210050